Pyramide
Pyramide
Lösung zu a)
$ \:\:\: $ $ \: \Large \Bigg\downarrow $ $ \normalsize $ a) Die Eckpunkte der quadratischen Basis sind:
$\qquad\qquad$ $ A \begin{pmatrix} 50\\50\\0 \end{pmatrix}, $ $ \:\:\: $ $ B \begin{pmatrix} -50\\50\\0 \end{pmatrix}, $ $ \:\:\: $ $ C \begin{pmatrix} -50\\-50\\0 \end{pmatrix}, $ $ \:\:\: $ $ D \begin{pmatrix} 50\\-50\\0 \end{pmatrix}, $ $ \:\:\:\:\:\: $ $ S \begin{pmatrix} 0\\0\\50 \end{pmatrix} $
$\qquad\qquad$ Die Kanten der Pyramide sind $AS$, $BS$, $CS$, und $DS$
$\qquad\qquad$ Gleichungen der Geraden, in denen die vier Pyramidenkanten $AS$, $BS$, $CS$, und $DS$ verlaufen.
$\qquad\qquad$ * Für Kante $AS: \:\:\:\:$ $ A \begin{pmatrix} 50\\50\\0 \end{pmatrix} \:\:\:\: und \:\:\:\: S \begin{pmatrix} 0\\0\\50 \end{pmatrix} $
$\qquad\qquad\qquad\qquad$ $g_{AS}: \overrightarrow{\text{x}} = \begin{pmatrix} 50\\50\\0 \end{pmatrix} + r\cdot \begin{pmatrix} 0-50\\0-50\\50-0 \end{pmatrix} $ = $ \underline {\underline { \begin{pmatrix} 50\\50\\0 \end{pmatrix} + r\cdot \begin{pmatrix} -50\\-50\\50 \end{pmatrix} }} $
$\qquad\qquad$ * Für Kante $BS: \:\:\:\:$ $ B \begin{pmatrix} -50\\50\\0 \end{pmatrix} \:\:\:\: und \:\:\:\: S \begin{pmatrix} 0\\0\\50 \end{pmatrix} $
$\qquad\qquad\qquad\qquad$ $g_{BS}: \overrightarrow{\text{x}} = \begin{pmatrix} -50\\50\\0 \end{pmatrix} + s\cdot \begin{pmatrix} 0+50\\0-50\\50-0 \end{pmatrix} $ = $ \underline {\underline { \begin{pmatrix} -50\\50\\0 \end{pmatrix} + s\cdot \begin{pmatrix} 50\\-50\\50 \end{pmatrix} }} $
$\qquad\qquad$ * Für Kante $CS: \:\:\:\:$ $ C \begin{pmatrix} -50\\-50\\0 \end{pmatrix} \:\:\:\: und \:\:\:\: S \begin{pmatrix} 0\\0\\50 \end{pmatrix} $
$\qquad\qquad\qquad\qquad$ $g_{CS}: \overrightarrow{\text{x}} = \begin{pmatrix} -50\\-50\\0 \end{pmatrix} + t\cdot \begin{pmatrix} 0+50\\0+50\\50-0 \end{pmatrix} $ = $ \underline {\underline { \begin{pmatrix} -50\\-50\\0 \end{pmatrix} + t\cdot \begin{pmatrix} 50\\50\\50 \end{pmatrix} }} $
$\qquad\qquad$ * Für Kante $DS: \:\:\:\:$ $ D \begin{pmatrix} 50\\-50\\0 \end{pmatrix} \:\:\:\: und \:\:\:\: S \begin{pmatrix} 0\\0\\50 \end{pmatrix} $
$\qquad\qquad\qquad\qquad$ $g_{DS}: \overrightarrow{\text{x}} = \begin{pmatrix} 50\\-50\\0 \end{pmatrix} + u\cdot \begin{pmatrix} 0-50\\0+50\\50-0 \end{pmatrix} $ = $ \underline {\underline { \begin{pmatrix} 50\\-50\\0 \end{pmatrix} + u\cdot \begin{pmatrix} -50\\50\\50 \end{pmatrix} }} $
Lösung zu b)
$ \:\:\: $ $ \: \Large \Bigg\downarrow $ $ \normalsize $ b) Bestimme den Punkt P, an dem die erste Rampe eine Höhe von 10 m erreicht.
$\qquad\:\:$ Angenommen, dass $P$ auf der Geraden $g_{AS}$ liegt und ist 10 m hoch, setze $z=10$ und löse nach $r$
$\qquad\qquad\qquad$ $ 10=0+50r\:\: \Longrightarrow\:\: r=0,2 $
$\qquad\qquad\qquad$ $ \iff \begin{cases} x=50+0,2\cdot(-50)=40\\ \\ y=50+0,2\cdot(-50)=40 \end{cases} $
$\qquad\qquad\qquad$ Also der Punkt $P$, an dem die Rampe eine Höhe von 10 m erreicht, ist: $\:\: \underline { \underline { P \begin{pmatrix} 40\\40\\10 \end{pmatrix} }} $
Lösung zu c)
$ \:\:\: $ $ \: \Large \Bigg\downarrow $ $ \normalsize $ c) Die anschließende Rampe soll den gleichen Steigungswinkel besitzen. Gleichung der Geraden.
$\qquad\qquad$ Die Rampe soll den gleichen Steigungswinkel besitzen, wie aus b). Dies bedeutet, die Richtungsvektor
$\qquad\qquad$ $ \overrightarrow{\text{v}}_{AS}= \begin{pmatrix} -50\\-50\\50 \end{pmatrix} $
$\qquad\qquad\qquad$ Finde den Punkt $Q$, der 50 m hoch ist, mit $ P \begin{pmatrix} 40\\40\\10 \end{pmatrix} $
$\qquad\qquad\qquad$ Geradengleichung der Rampe: $ g_{PQ}:\:\: \overrightarrow{\text{x}}= \begin{pmatrix} x\\y\\z \end{pmatrix} = \begin{pmatrix} 40\\40\\10 \end{pmatrix} +r\cdot \begin{pmatrix} -50\\-50\\50 \end{pmatrix} $
$\qquad\qquad\qquad$ Für $\textcolor{red}{z_{PQ}=50}$, hast du: $50=10+r\cdot50 \iff 40=50r \iff r=$ $ \large { \frac{40}{50} } $ $=0,8$
$\qquad\qquad\qquad$ $ \iff \begin{cases} x_{PQ}=40+0,8\cdot(-50)=0\\ \\ y_{PQ}=40+0,8\cdot(-50)=0\\ \\ z_{PQ}=10+0,8\cdot 50=50 \end{cases} $
$\qquad\qquad$ Der Punkt, wo diese Rampe endet ist somit $ Q \begin{pmatrix} 0\\0\\50 \end{pmatrix}, $ also der Spitzenpunkt der Pyramide.
$\qquad\qquad$ In welchem Punkt erreicht die Rampe die Höhe von 15 m?
$\qquad\qquad\qquad$ Setze $\textcolor{red}{z_{PQ}=15}$ in die Geradengleichung der Rampe ein:
$\qquad\qquad\qquad$ $ g_{PQ}: \: \begin{pmatrix} x\\y\\ \textcolor{red}{15} \end{pmatrix} = \begin{pmatrix} 40\\40\\10 \end{pmatrix} +r\cdot \begin{pmatrix} -50\\-50\\50 \end{pmatrix} $
$\qquad\qquad\qquad\qquad$ $ \Longrightarrow \textcolor{red}{15}=10+50\cdot r \iff 5=50\cdot r \iff r= $ $ \large { \frac{5}{50} } $ $ =0,1 $
$\qquad\qquad\qquad$ $ \iff \begin{cases} x=40-50\cdot 0,1=35\\ \\ y=40-50\cdot 0,1=35\\ \\ z=15 \end{cases} $
$\qquad\qquad\qquad$ Die Rampe erreicht die Höhe von 15 m im Punkt $ \:\: \underline { \underline { \begin{pmatrix} 35\\35\\15 \end{pmatrix} }} $
Lösung zu d)
$ \:\:\: $ $ \: \Large \Bigg\downarrow $ $ \normalsize $ d) In welchen Punkten durchstoßen die Pyramidenkanten eine Höhe von 20 m?
$\qquad\qquad$ setze $z=20$ in die Geradengleichungen der Kanten ein, berechne $r,\: s,\: t$ und $u$
$\qquad\qquad$ * Für die Kante $AS:$
$\qquad\qquad\qquad$ $ 20=0+50r \iff r= $ $ \large { \frac{20}{50} } $ $ =0,4 \Longrightarrow \begin{cases} x_{AS}=50+0,4\cdot (-50)=30\\ \\ y_{AS}=50+0,4\cdot (-50)=30\\ \\ z_{AS}=20 \end{cases} $
$\qquad\qquad\qquad$ Die Kante $AS$ durchstößt die Höhe von 20 m im Punkt $ \begin{pmatrix} 30\\30\\20 \end{pmatrix} $
$\qquad\qquad$ * Für die Kante $BS:$
$\qquad\qquad\qquad$ $ 20=0+50s \iff s= $ $ \large { \frac{20}{50} } $ $ =0,4 \Longrightarrow \begin{cases} x_{BS}=-50+0,4\cdot 50=-30\\ \\ y_{BS}=50+0,4\cdot (-50)=30\\ \\ z_{BS}=20 \end{cases} $
$\qquad\qquad\qquad$ Die Kante $BS$ durchstößt die Höhe von 20 m im Punkt $ \begin{pmatrix} -30\\30\\20 \end{pmatrix} $
$\qquad\qquad$ * Für die Kante $CS:$
$\qquad\qquad\qquad$ $ 20=0+50t \iff t= $ $ \large { \frac{20}{50} } $ $ =0,4 \Longrightarrow \begin{cases} x_{CS}=-50+0,4\cdot 50=-30\\ \\ y_{CS}=-50+0,4\cdot 50=-30\\ \\ z_{CS}=20 \end{cases} $
$\qquad\qquad\qquad$ Die Kante $CS$ durchstößt die Höhe von 20 m im Punkt $ \begin{pmatrix} -30\\-30\\20 \end{pmatrix} $
$\qquad\qquad$ * Für die Kante $DS:$
$\qquad\qquad\qquad$ $ 20=0+50u \iff u= $ $ \large { \frac{20}{50} } $ $ =0,4 \Longrightarrow \begin{cases} x_{DS}=50+0,4\cdot (-50)=30\\ \\ y_{DS}=-50+0,4\cdot 50=-30\\ \\ z_{DS}=20 \end{cases} $
$\qquad\qquad\qquad$ Die Kante $DS$ durchstößt die Höhe von 20 m im Punkt $ \begin{pmatrix} 30\\-30\\20 \end{pmatrix} $
$\qquad\qquad$ In welcher Höhe beträgt der horizontale Querschnitt der Pyramide $25\: m^2$?
$\qquad\qquad$ Der Querschnitt einer Pyramide in einer bestimmten Höhe ist ein Quadrat. Wenn du die Höhe $z$ kennst,
$\qquad\qquad$ ist die Seitenlänge des Quadrats $100−2z$ (da sich die Basis von $100m$ Breite auf $0$ in der Spitze verjüngt).
$\qquad\qquad$ $\iff$ Die Fläche des Querschnitts ist daher: $A(z)=(100-2z)^2$
$\qquad\qquad$ Setze $A(z)=25$ ein:
$\qquad\qquad$ $\iff (100-2z)^2=25 \quad|\: \sqrt{…} $
$\qquad\qquad$ $\iff 2z=95 \Longrightarrow z=47,5 $
$\qquad\qquad$ Der horizontale Querschnitt der Pyramide beträgt bei einer Höhe von $ \underline { \underline { z=47,5\: m }} $ eine Fläche von $25\: m^2$.
Lösung zu e)
$ \:\:\: $ $ \: \Large \Bigg\downarrow $ $ \normalsize $ $\textcolor{red}{e)}$ Zeige, dass vom Punkt $T$ je ein Lichtstrahl auf die Punkte $B$ und $S$ fällt.
$\qquad\qquad$ Untersuche die Richtungsvektoren $ \overrightarrow{\text{TB}} $ und $ \overrightarrow{\text{TS}} $ und zeige, dass sie sich in der Richtung des gegebenen
$\qquad\qquad$ Lichtstrahls ( Richtungsvektor $\overrightarrow{\text{v}}$ ) bewegen können.
$\qquad\qquad$ Gegebene Punkte:
$\qquad\qquad\qquad\qquad\qquad\qquad$ $ T \begin{pmatrix} 50\\-50\\100 \end{pmatrix}, \:\:\:\: B \begin{pmatrix} -50\\50\\0 \end{pmatrix}, \:\:\:\: S \begin{pmatrix} 0\\0\\50 \end{pmatrix} \:\:\:\: $ und $ \:\:\:\: \overrightarrow{\text{v}}= \begin{pmatrix} -1-a\\3-a\\a-2 \end{pmatrix} $
$\qquad\qquad$ Lichtstrahl auf $B$:
$\qquad\qquad\qquad$ Vector $T$ nach $B$: $ \:\:\:\: \overrightarrow{\text{TB}}=B-T= \begin{pmatrix} -50-50\\50+50\\0-100 \end{pmatrix} = \begin{pmatrix} -100\\100\\-100 \end{pmatrix} $
$\qquad\qquad\qquad$ Um zu zeigen, dass ein Lichtstrahl auf $B$ fällt, setze $ \overrightarrow{\text{TB}}=\lambda\vec{v} $ und lösen das Gleichungssystem:
$\qquad\qquad\qquad$ $ \iff \begin{cases} -100 &=& \lambda(-1-a) &(1)&\\ \\ 100 &=& \lambda(3-a) &(2)&\\ \\ -100 &=& \lambda(2-a) &(3)& \end{cases} $
$\qquad\qquad\qquad$ $(1): \:\: \lambda(-1-a)=0 \Longrightarrow \begin{cases} \lambda=0 &\Rightarrow& 0=0 was\: trivial\: ist,\: also\: nicht\: relevant.\\ \vee\\ -1-a=0 &\Rightarrow& a=-1 \end{cases} $
$\qquad\qquad\qquad\qquad$ Setze $a=−1$ in die anderen Gleichungen ein: $ $
$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$ $ \textcolor {red} { To\: Be\: Continued … } $