Oberfläche der dreiseitigen Pyramide
Lösung zu a)
$ \:\:\: $ $ \: \Large \Bigg\downarrow $ $ \normalsize $ a) Bestimme den Oberflächeninhalt der dreiseitigen Pyramide
$\qquad\:\:$ $ Die\: Punkte:\:\: A \begin{pmatrix} 3\\3\\0 \end{pmatrix}, \:\: B \begin{pmatrix} 1\\1\\4 \end{pmatrix}, \:\: C \begin{pmatrix} 6\\0\\2 \end{pmatrix}, \:\: D \begin{pmatrix} 4\\4\\3 \end{pmatrix} $
$\qquad\:\:$ * Bestimme die Grundfläche der Dreieck $ABC$
$\qquad\qquad$ Die Formel für Dreiecke: $ A_{ABC} = \large \frac{1}{2} \cdot $ $ |\overrightarrow{\text{AB}}\times\overrightarrow{\text{AC}}| $
$\qquad\qquad$ Vektor $ \overrightarrow{\text{AB}} = B-A = \begin{pmatrix} 1\\1\\4 \end{pmatrix} – \begin{pmatrix} 3\\3\\0 \end{pmatrix} = \begin{pmatrix} 1-3\\1-3\\4-0 \end{pmatrix} = \begin{pmatrix} -2\\-2\\4 \end{pmatrix} $
$\qquad\qquad$ Vektor $ \overrightarrow{\text{AC}} = C-A = \begin{pmatrix} 6\\6\\2 \end{pmatrix} – \begin{pmatrix} 3\\3\\0 \end{pmatrix} = \begin{pmatrix} 6-3\\0-3\\2-0 \end{pmatrix} = \begin{pmatrix} 3\\-3\\2 \end{pmatrix} $
$\qquad\qquad$ Kreuzprodukt von $ \overrightarrow{\text{AB}}\times\overrightarrow{\text{AC}} = \begin{pmatrix} -2\\-2\\4 \end{pmatrix} \times \begin{pmatrix} 3\\-3\\2 \end{pmatrix} = \begin{pmatrix} -2\cdot(2) &-&4\cdot(-3)\\4\cdot(3)&-&2\cdot(-2)\\-2\cdot(-3)&-&3\cdot(-2) \end{pmatrix} = \begin{pmatrix} -8\\16\\12 \end{pmatrix} $
$\qquad\qquad$ Betrag von $ |\overrightarrow{\text{AB}}\times\overrightarrow{\text{AC}}| = \sqrt{(-8)^2+16^2+12^2} = 21,54 $
$\qquad\qquad$ Flächeninhalt des Dreiecks $ABC$:
$\qquad\qquad\qquad$ $ A_{ABC} = \large \frac{1}{2} \cdot $ $ |\overrightarrow{\text{AB}}\times\overrightarrow{\text{AC}}| $ = $ \large \frac{1}{2} \cdot $ $ 21,45 = $ $ \underline { \underline { 10,77\:\: FE } } $
$\qquad\:\:$ * Bestimme die Seitenflächen der Dreiecke $ABD,\: ACD\:$ und $BCD$
$\qquad\:\:\:\:\:\:$ Für jedes Dreieck wird dieselbe Methode angewandt.
$\qquad\:\:\:\:\:\:$ Dreieck $ABD$:
$\qquad\qquad\qquad$ $ \overrightarrow{\text{AB}} = \begin{pmatrix} -2\\-2\\4 \end{pmatrix}, \:\: \overrightarrow{\text{AD}} = \begin{pmatrix} 4-3\\4-3\\3-0 \end{pmatrix} = \begin{pmatrix} 1\\1\\3 \end{pmatrix} $
$\qquad\qquad\qquad$ Kreuzprodukt:
$\qquad\qquad\qquad$ $ \overrightarrow{\text{AB}}\times\overrightarrow{\text{AD}} = \begin{pmatrix} -2\\-2\\4 \end{pmatrix} \times \begin{pmatrix} 1\\1\\3 \end{pmatrix} = \begin{pmatrix} -2\cdot(3)&-&4\cdot(1)\\4\cdot(1)&-&3\cdot(-2)\\-2\cdot(1)&-&1\cdot(-2) \end{pmatrix} = \begin{pmatrix} -10\\10\\0 \end{pmatrix} $
$\qquad\qquad\qquad$ Betrag $ABD$: $\sqrt{(-10)^2+10^2+0^2}=10\sqrt{2}=14,14$
$\qquad\qquad\qquad$ Flächeninhalt von $ABD$: $ \:\: A_{ABD} = \large \frac{1}{2} \cdot $ $ 14,14 = \underline { \underline { 7,07\:\: FE }} $
$\qquad\:\:\:\:\:\:$ Dreieck $ACD$:
$\qquad\qquad\qquad$ $ \overrightarrow{\text{AC}} = \begin{pmatrix} 3\\-3\\2 \end{pmatrix}, \:\: \overrightarrow{\text{AD}} = \begin{pmatrix} 1\\1\\3 \end{pmatrix} $
$\qquad\qquad\qquad$ Kreuzprodukt:
$\qquad\qquad\qquad$ $ \overrightarrow{\text{AC}}\times\overrightarrow{\text{AD}} = \begin{pmatrix} 3\\-3\\2 \end{pmatrix} \times \begin{pmatrix} 1\\1\\3 \end{pmatrix} = \begin{pmatrix} -3\cdot(3)&-&2\cdot(1)\\2\cdot(1)&-&3\cdot(3)\\3\cdot(1)&-&1\cdot(-3) \end{pmatrix} = \begin{pmatrix} -11\\-7\\6 \end{pmatrix} $
$\qquad\qquad\qquad$ Betrag $ACD$: $\sqrt{(-11)^2+(-7)^2+6^2}=\sqrt{206}=14,35$
$\qquad\qquad\qquad$ Flächeninhalt von $ACD$: $ \:\: A_{ACD} = \large \frac{1}{2} \cdot $ $ 14,35 = \underline { \underline { 7,17\:\: FE }} $
$\qquad\:\:\:\:\:\:$ Dreieck $BCD$:
$\qquad\qquad\qquad$ $ \overrightarrow{\text{BC}} = \begin{pmatrix} 6-1\\0-1\\2-4 \end{pmatrix} = \begin{pmatrix} 5\\-1\\-2 \end{pmatrix} , \:\: \overrightarrow{\text{BD}} = \begin{pmatrix} 4-1\\4-1\\3-4 \end{pmatrix} = \begin{pmatrix} 3\\3\\-1 \end{pmatrix} $
$\qquad\qquad\qquad$ Kreuzprodukt:
$\qquad\qquad\qquad$ $ \overrightarrow{\text{BC}}\times\overrightarrow{\text{BD}} = \begin{pmatrix} 5\\-1\\-2 \end{pmatrix} \times \begin{pmatrix} 3\\3\\-1 \end{pmatrix} = \begin{pmatrix} -1\cdot(-1)&-&3\cdot(-2)\\-2\cdot(3)&-&5\cdot(-1)\\5\cdot(3)&-&(-1)\cdot(3) \end{pmatrix} = \begin{pmatrix} 7\\-1\\18 \end{pmatrix} $
$\qquad\qquad\qquad$ Betrag $BCD$: $\sqrt{7^2+(-1)^2+18^2}=\sqrt{206}=19,33$
$\qquad\qquad\qquad$ Flächeninhalt von $BCD$: $ \:\: A_{BCD} = \large \frac{1}{2} \cdot $ $ 19,33 = \underline { \underline { 9,66\:\: FE }} $
$\qquad\:\:$ Oberflächeninhalt der Pyramide = Gesamtoberfläche (Die Summe der vier Dreiecksflächen)
$\qquad\qquad$ $ O_Pyramide = A_{ABC}+A_{ABD}+A_{ACD}+A_{BCD} = 10,77+7,07+7,17+9,66 = \underline { \underline { 34,67\:\: FE }} $
Lösung zu b)
$ \:\:\: $ $ \: \Large \Bigg\downarrow $ $ \normalsize $ B) Lese die Koordinaten der Punkte aus dem Schaubild ab
$\qquad\:\:$ $ Die\: Punkte:\:\: A \begin{pmatrix} 4\\4\\4 \end{pmatrix}, \:\: B \begin{pmatrix} 1\\5\\2 \end{pmatrix}, \:\: C \begin{pmatrix} 1\\1\\4 \end{pmatrix}, \:\: D \begin{pmatrix} 2\\4\\6 \end{pmatrix} $
$\qquad\:\:$ * Bestimme die Grundfläche der Dreieck $ABC$
$\qquad\qquad$ Vektor $ \overrightarrow{\text{AB}} = B-A = \begin{pmatrix} 1\\5\\2 \end{pmatrix} – \begin{pmatrix} 4\\4\\4 \end{pmatrix} = \begin{pmatrix} 1-4\\5-4\\2-4 \end{pmatrix} = \begin{pmatrix} -3\\1\\-2 \end{pmatrix} $
$\qquad\qquad$ Vektor $ \overrightarrow{\text{AC}} = C-A = \begin{pmatrix} 1\\1\\4 \end{pmatrix} – \begin{pmatrix} 4\\4\\4 \end{pmatrix} = \begin{pmatrix} 1-4\\1-4\\4-4 \end{pmatrix} = \begin{pmatrix} -3\\-3\\0 \end{pmatrix} $
$\qquad\qquad$ Kreuzprodukt von $ \overrightarrow{\text{AB}}\times\overrightarrow{\text{AC}} = \begin{pmatrix} -3\\1\\-2 \end{pmatrix} \times \begin{pmatrix} -3\\-3\\0 \end{pmatrix} = \begin{pmatrix} 1\cdot(0)&-&(-2)\cdot(-3)\\(-2)\cdot(-3)&-&0\cdot(-3)\\-3\cdot(-3)&-&1\cdot(-3) \end{pmatrix} = \begin{pmatrix} -6\\6\\12 \end{pmatrix} $
$\qquad\qquad$ Betrag von $ |\overrightarrow{\text{AB}}\times\overrightarrow{\text{AC}}| = \sqrt{(-6)^2+6^2+12^2} = 14,69 $
$\qquad\qquad$ Flächeninhalt des Dreiecks $ABC$:
$\qquad\qquad\qquad$ $ A_{ABC} = \large \frac{1}{2} \cdot $ $ |\overrightarrow{\text{AB}}\times\overrightarrow{\text{AC}}| $ = $ \large \frac{1}{2} \cdot $ $ 14,69 = $ $ \underline { \underline { 7,34\:\: FE } } $
$\qquad\:\:$ * Bestimme die Seitenflächen der Dreiecke $ABD,\: ACD\:$ und $BCD$
$\qquad\:\:\:\:\:\:$ Für jedes Dreieck wird dieselbe Methode angewandt.
$\qquad\:\:\:\:\:\:$ Dreieck $ABD$:
$\qquad\qquad\qquad$ $ \overrightarrow{\text{AB}} = \begin{pmatrix} -3\\1\\-2 \end{pmatrix}, \:\: \overrightarrow{\text{AD}} = \begin{pmatrix} 2-4\\4-4\\6-4 \end{pmatrix} = \begin{pmatrix} -2\\0\\2 \end{pmatrix} $
$\qquad\qquad\qquad$ Kreuzprodukt:
$\qquad\qquad\qquad$ $ \overrightarrow{\text{AB}}\times\overrightarrow{\text{AD}} = \begin{pmatrix} -3\\1\\-2 \end{pmatrix} \times \begin{pmatrix} -2\\0\\2 \end{pmatrix} = \begin{pmatrix} 1\cdot(2)&-&0\cdot(-2)\\(-2)\cdot(-2)&-&2\cdot(-3)\\(-3)\cdot(0)&-&1\cdot(-2) \end{pmatrix} = \begin{pmatrix} 2\\10\\2 \end{pmatrix} $
$\qquad\qquad\qquad$ Betrag $ABD$: $\sqrt{2^2+10^2+2^2}=6\sqrt{3}=10,39$
$\qquad\qquad\qquad$ Flächeninhalt von $ABD$: $ \:\: A_{ABD} = \large \frac{1}{2} \cdot $ $ 10,39 \approx \underline { \underline { 5,19\:\: FE }} $
$\qquad\:\:\:\:\:\:$ Dreieck $ACD$:
$\qquad\qquad\qquad$ $ \overrightarrow{\text{AC}} = \begin{pmatrix} -3\\-3\\0 \end{pmatrix}, \:\: \overrightarrow{\text{AD}} = \begin{pmatrix} -2\\0\\2 \end{pmatrix} $
$\qquad\qquad\qquad$ Kreuzprodukt:
$\qquad\qquad\qquad$ $ \overrightarrow{\text{AC}}\times\overrightarrow{\text{AD}} = \begin{pmatrix} -3\\-3\\0 \end{pmatrix} \times \begin{pmatrix} -2\\0\\2 \end{pmatrix} = \begin{pmatrix} 2\cdot(-3)&-&0\cdot(0)\\0\cdot(-2)&-&2\cdot(-3)\\0\cdot(-3)&-&(-2)\cdot(-3) \end{pmatrix} = \begin{pmatrix} -6\\6\\-6 \end{pmatrix} $
$\qquad\qquad\qquad$ Betrag $ACD$: $\sqrt{(-6)^2+6^2+(-6)^2}=6\sqrt{3}=10,39$
$\qquad\qquad\qquad$ Flächeninhalt von $ACD$: $ \:\: A_{ACD} = \large \frac{1}{2} \cdot $ $ 10,39 \approx \underline { \underline { 5,19\:\: FE }} $
$\qquad\:\:\:\:\:\:$ Dreieck $BCD$:
$\qquad\qquad\qquad$ $ \overrightarrow{\text{BC}} = \begin{pmatrix} 1-1\\1-5\\4-2 \end{pmatrix} = \begin{pmatrix} 0\\-4\\2 \end{pmatrix}, \:\: \overrightarrow{\text{BD}} = \begin{pmatrix} 2-1\\4-5\\6-2 \end{pmatrix} = \begin{pmatrix} 1\\-1\\4 \end{pmatrix} $
$\qquad\qquad\qquad$ Kreuzprodukt:
$\qquad\qquad\qquad$ $ \overrightarrow{\text{BC}}\times\overrightarrow{\text{BD}} = \begin{pmatrix} 0\\-4\\2 \end{pmatrix} \times \begin{pmatrix} 1\\-1\\4 \end{pmatrix} = \begin{pmatrix} 4\cdot(-4)&-&2\cdot(-1)\\2\cdot(1)&-&0\cdot(4)\\0\cdot(-1)&-&1\cdot(-4) \end{pmatrix} = \begin{pmatrix} -14\\2\\4 \end{pmatrix} $
$\qquad\qquad\qquad$ Betrag $BCD$: $\sqrt{(-14)^2+2^2+4^2}=6\sqrt{6}=14,69$
$\qquad\qquad\qquad$ Flächeninhalt von $BCD$: $ \:\: A_{BCD} = \large \frac{1}{2} \cdot $ $ 14,69 = \underline { \underline { 7,34\:\: FE }} $
$\qquad\:\:$ Gesamtoberfläche der Pyramide (Die Summe der vier Dreiecksflächen)
$\qquad\qquad$ $ O_Pyramide = A_{ABC}+A_{ABD}+A_{ACD}+A_{BCD} = 7,34+5,19+5,19+7,34 = \underline { \underline { 25,06\:\: FE }} $