Home » Mathematik » Vektorrechnung - Pyramide

Vektorrechnung - Pyramide

Maths-High-School-6-1

Lösung
Lies die Punkte ab:

$ A \begin{pmatrix} 0\\0\\0 \end{pmatrix} , $ $\:\:$ $ B \begin{pmatrix} 0\\100\\0 \end{pmatrix} , $ $\:\:$ $ C \begin{pmatrix} -100\\100\\0 \end{pmatrix} , $ $\:\:$ $ D \begin{pmatrix} -100\\0\\0 \end{pmatrix} , $ $\:\:$ $ S \begin{pmatrix} -50\\50\\50 \end{pmatrix} $

$ \:\:\: $ $ \: \Large \Bigg\downarrow $ $ \normalsize a)\: Bestimme\: die\: Gleichungen\: der\: Geraden\: der\: vier\: Pyrami­denkanten $

$ \:\:\:\:\:\: $ Gerade $ AS \longrightarrow g: \vec{x}= \begin{pmatrix} 0\\0\\0 \end{pmatrix} + r\cdot \begin{pmatrix} -50-0\\50-0\\50-0 \end{pmatrix} = \begin{pmatrix} 0\\0\\0 \end{pmatrix} + r\cdot \begin{pmatrix} -50\\50\\50 \end{pmatrix} $

$ \:\:\:\:\:\: $ Gerade $ BS \longrightarrow h: \vec{x}= \begin{pmatrix} 0\\100\\0 \end{pmatrix} + s\cdot \begin{pmatrix} -50-0\\50-100\\50-0 \end{pmatrix} = \begin{pmatrix} 0\\100\\0 \end{pmatrix} + s\cdot \begin{pmatrix} -50\\-50\\50 \end{pmatrix} $

$ \:\:\:\:\:\: $ Gerade $ CS \longrightarrow i: \vec{x}= \begin{pmatrix} -100\\100\\0 \end{pmatrix} + t\cdot \begin{pmatrix} -50+100\\50-100\\50-0 \end{pmatrix} = \begin{pmatrix} -100\\100\\0 \end{pmatrix} + t\cdot \begin{pmatrix} 50\\-50\\50 \end{pmatrix} $

$ \:\:\:\:\:\: $ Gerade $ DS \longrightarrow j: \vec{x}= \begin{pmatrix} -100\\0\\0 \end{pmatrix} + u\cdot \begin{pmatrix} -50+100\\50-0\\50-0 \end{pmatrix} = \begin{pmatrix} -100\\0\\0 \end{pmatrix} + u\cdot \begin{pmatrix} 50\\50\\50 \end{pmatrix} $

$ \:\:\: $ $ \: \Large \Bigg\downarrow $ $ \normalsize b)\: Bestimme\: P $

$ \:\:\:\:\:\: $ Mit $z=10m\: \longrightarrow\: P \begin{pmatrix} x\\y\\10 \end{pmatrix} , $ da sind nur noch $x$ und $y$ zu bestimmen.

$ \:\:\:\:\:\: $ $P$ ist den Schnittpunkt zwischen den Geraden $AP$ und $BS$

$ \:\:\:\:\:\: $ $ \iff \begin{pmatrix} 0\\0\\0 \end{pmatrix} + r\cdot \begin{pmatrix} x-0\\y-0\\10-0 \end{pmatrix} = \begin{pmatrix} 0\\100\\0 \end{pmatrix} + s\cdot \begin{pmatrix} -50\\-50\\50 \end{pmatrix} $

$ \:\:\:\:\:\: $ $ \:\:\: $ $ \: \Large \Bigg\downarrow $ $ \normalsize Schreibe\: als\: Lineares\: Gleichungssystem\: (LGS) $

$ \:\:\:\:\:\: $ $ \:\:\:\:\: $ $ \begin{cases} 0 &+ &x \cdot r &= 0 &- &50 \cdot s \:\:\:\: (I)\\ 0 &+ &y \cdot r &= 100 &- &50 \cdot s \:\:\:\: (II)\\ 0 &+ &10 \cdot r &= 0 &+ &50 \cdot s \:\:\:\: (III) \end{cases} $

$ \:\:\:\:\:\: $ $ \:\:\: $ $ \: \Large \Bigg\downarrow $ $ \normalsize Setzte\: (III)\: in\: (I)\: ein $

$ \:\:\:\:\:\: $ $ \:\:\:\:\: $ $ \Longrightarrow\:\: x\cdot r=-10\cdot r \qquad |\: :r \qquad \longrightarrow \underline{x=-10} $

$ \:\:\:\:\:\: $ $ \:\:\:\:\: $ Für $x=-10$, $r=1$ und $s=\frac{1}{5}=0.2$

$ \:\:\:\:\:\: $ $ \:\:\: $ $ \: \Large \Bigg\downarrow $ $ \normalsize Setzte\: r\: und\: s\: in\: (II)\: ein $

$ \:\:\:\:\:\: $ $ \:\:\:\:\: $ $ \Longrightarrow\:\: y\cdot 1=100-50\cdot \frac{1}{5} \qquad \longrightarrow \underline{y=90} $

$\qquad\qquad\qquad\qquad$ $\:\:$ $ \large P \begin{pmatrix} -10\\90\\10 \end{pmatrix} $


$ \:\:\:\: $ $ \qquad $ Gleichung der Geraden $AP$: $\overrightarrow{AP}= \begin{pmatrix} 0\\0\\0 \end{pmatrix} +r \cdot \begin{pmatrix} -10-0\\90-0\\10-0 \end{pmatrix} = \begin{pmatrix} 0\\0\\0 \end{pmatrix} +r \cdot \begin{pmatrix} -10\\90\\10 \end{pmatrix} $

$ \:\:\:\:\:\: $ $ \:\:\: $ $ \: \Large \Bigg\downarrow $ $ \normalsize Bilde\: die\: Steigung\: von\: P:\: (Sinus\: des\: Steigungswinkels) $

$ \:\:\:\:\:\: $ $ \qquad $ $m_P= \large \frac { \begin{vmatrix} \begin{pmatrix} -10\\90\\10 \end{pmatrix} \cdot \begin{pmatrix} 0\\0\\1 \end{pmatrix} \end{vmatrix} } { \begin{vmatrix} \begin{pmatrix} -10\\90\\10 \end{pmatrix} \end{vmatrix} \cdot \begin{vmatrix} \begin{pmatrix} 0\\0\\1 \end{pmatrix} \end{vmatrix} } =\frac{\sqrt{83}}{83} =0,1097 $

$ \:\:\:\:\:\: $ $ \:\:\: $ $ \: \Large \Bigg\downarrow $ $ \normalsize c)\: Bestimme\: die\: Gleichung\: der\: entsprechenden\: Geraden\: PQ\: $

$ \:\:\:\:\:\: $ $ \qquad $ Bilde die Differenz von P, da P auf PQ liegt

$ \:\:\:\:\:\: $ $ \qquad $ $ PQ= \begin{pmatrix} -100\\100\\0 \end{pmatrix} +r \cdot \begin{pmatrix} 50\\-50\\50 \end{pmatrix} – \begin{pmatrix} -10\\90\\10 \end{pmatrix} = \begin{pmatrix} 50r-90\\-50r+10\\50r-10 \end{pmatrix} $

$ \:\:\:\:\:\: $ $ \:\:\: $ $ \: \Large \Bigg\downarrow $ $ \normalsize c)\: Bestimme\: die\: Gleichung\: der\: entsprechenden\: Geraden\: PQ\: $

$ \:\:\:\:\:\: $ $ \qquad $ Bilde die Differenz von P, da P auf PQ liegt

$ \:\:\:\:\:\: $ $ \qquad $ Steigung von $PQ=AP=\frac{\sqrt{83}}{83}$

$ \:\:\:\:\:\: $ $ \:\:\: $ $ \: \Large \Bigg\downarrow $ $ \normalsize Berechne\: die\: Gleichung\: von\: Q $

$ \:\:\:\:\:\: $ $ \qquad $ $ m_Q=\frac { \large \begin{vmatrix} \begin{pmatrix} 50r-90\\-50r+10\\50r-10 \end{pmatrix} \cdot \begin{pmatrix} 0\\0\\1 \end{pmatrix} \end{vmatrix} } { \begin{vmatrix} \begin{pmatrix} 50r-90\\-50r+10\\50r-10 \end{pmatrix} \end{vmatrix} \cdot \begin{vmatrix} \begin{pmatrix} 0\\0\\1 \end{pmatrix} \end{vmatrix} } = \large \frac{\sqrt{83}}{83} $

$ \large \iff $ $ \large \frac { (50r-10)\cdot 1 } { (\sqrt{(50r-90)^2+(-50r+10)^2+(50r-10)^2}) \: \cdot \: (\sqrt{1^2}) } $

$ \large \iff $ $ \large \frac { 50r-10 } { (\sqrt{(50r-90)^2+(-50r+10)^2+(50r-10)^2}) \: \cdot \: 1 } = \frac{\sqrt{83}}{83} $

$ \large \iff $ $ 83\cdot (50r-10)=\sqrt{83}\cdot (\sqrt{(50r-90)^2+(-50r+10)^2+(50r-10)^2}) \: \cdot \: (1) $

$ \:\:\:\:\:\: $ $ \:\:\: $ $ \: \Large \Bigg\downarrow $ $ \normalsize Stelle\: nach\: r $

$ \:\:\:\:\:\: $ $ \qquad $ $ 8000r\cdot (25r-9)=0\: \longrightarrow\: \begin{cases} r=0\\r=\frac{9}{25}=0,36 \end{cases} $

$ \:\:\:\:\:\: $ $ \qquad $ $ Q= \begin{pmatrix} -100\\100\\0 \end{pmatrix} + 0,36 \cdot \begin{pmatrix} 50\\-50\\50 \end{pmatrix} = \begin{pmatrix} -82\\82\\18 \end{pmatrix} $

$ \:\:\:\:\:\: $ $ \qquad $ $ \iff\: $ Im Punkt $Q \begin{pmatrix} -82\\82\\18 \end{pmatrix} $ endet die Rampe.

$ \:\:\:\:\:\: $ $ \:\:\: $ $ \: \Large \Bigg\downarrow $ $ \normalsize In\: welchem\: Punkt\: erreicht\: die\: Rampe\: die\: Höhe\: von\: 15m? $

$ \:\:\:\:\:\: $ $ \qquad\: $ Setzte:

$ \:\:\:\:\:\: $ $ \qquad $ $ \begin{pmatrix} -10\\90\\10 \end{pmatrix} +r \cdot \begin{bmatrix} \begin{pmatrix} -82\\82\\18 \end{pmatrix} – \begin{pmatrix} -10\\90\\10 \end{pmatrix} \end{bmatrix} = \begin{pmatrix} x\\y\\15 \end{pmatrix} $

$ \:\:\:\:\:\: $ $ \qquad $ $ \Longrightarrow\: x=-55\:\: |\:\: y=85\:\: |\:\: r=0,625 $

$ \:\:\:\:\:\: $ $ \qquad $ $ \Longrightarrow $ Im Punkt $ \begin{pmatrix} -55\\85\\15 \end{pmatrix} $ erreicht die Rampe die Höhe von $15m.$


$ \:\:\:\:\:\: $ $ \:\:\: $ $ \: \Large \Bigg\downarrow $ $ \normalsize In\: welchen\: Punkte\: durchstoßen\: die\: Pyramidenkanten\: eine\: Höhe\: von\: 20m? $

$ \:\:\:\:\:\: $ $ \qquad $ Stelle die Geradengleichung für $AS$:

$ \:\:\:\:\:\: $ $ \qquad $ $AS:\vec{x}=$ $ \begin{pmatrix} 0\\0\\0 \end{pmatrix} + r\cdot \begin{pmatrix} -50\\50\\50 \end{pmatrix} = \begin{pmatrix} x\\y\\20 \end{pmatrix} $

$ \:\:\:\:\:\: $ $ \qquad $ $ \iff $ $ \begin{cases} -50r=x\\ 50r=y\\ 50r=20 \qquad |\: r=\frac{2}{5}=0,4 \:\:|\:\: -50\cdot \frac{2}{5}=-20=x \:\:|\:\: 50\cdot \frac{2}{5}=20=y \end{cases} $

$ \:\:\:\:\:\: $ $ \qquad $ $ \Longrightarrow AS = \begin{pmatrix} -20\\20\\20 \end{pmatrix} $

$ \:\:\:\:\:\: $ $ \qquad $ Stelle die Geradengleichung für $BS$:

$ \:\:\:\:\:\: $ $ \qquad $ $AS:\vec{x}=$ $ \begin{pmatrix} 0\\100\\0 \end{pmatrix} + r\cdot \begin{pmatrix} -50\\-50\\50 \end{pmatrix} = \begin{pmatrix} x\\y\\20 \end{pmatrix} $

$ \:\:\:\:\:\: $ $ \qquad $ $ \iff $ $ \begin{cases} -50s &=x\\ 100-50s &=y\\ 50s &=20 \end{cases} $

$ \:\:\:\:\:\: $ $ \qquad\qquad $ $ \qquad |\: s=\frac{2}{5}=0,4 \:\:|\:\: -50\cdot \frac{2}{5}=-20=x \:\:|\:\: 100-50\cdot \frac{2}{5}=20=y $

$ \:\:\:\:\:\: $ $ \qquad $ $ \Longrightarrow BS = \begin{pmatrix} -20\\80\\20 \end{pmatrix} $

$ \:\:\:\:\:\: $ $ \qquad $ Stelle die Geradengleichung für $CS$ und $DS$: Gleiches Verfahren

$ \:\:\:\:\:\: $ $ \qquad $ $ \Longrightarrow CS = \begin{pmatrix} -80\\80\\20 \end{pmatrix} $ $ \:\:\: $ und $ \:\:\: $ $ DS= \begin{pmatrix} -80\\20\\20 \end{pmatrix} $

$ \:\:\:\:\:\: $ $ \:\:\: $ $ \: \Large \Bigg\downarrow $ $ \normalsize In\: welcher\: Höhe\: beträgt\: der\: horizontale\: Querschnitt\: der\: Pyramide\: 25m²? $

$ \:\:\:\:\:\: $ $ \qquad $ Da $A=a\cdot a=25m^2 \longrightarrow$ Grundseitenlänge $a=5m$

$ \:\:\:\:\:\: $ $ \qquad\qquad $ Mit dem Strahlensatz: $\frac{h_1}{5}=\frac{50}{100} \longrightarrow h_1=2,5m$

$ \:\:\:\:\:\: $ $ \qquad\qquad $ Also, $50m-2,5m=47,5m$

$ \:\:\:\:\:\: $ $ \qquad $ $ \longrightarrow$ In Höher $47,5m$ beträgt der horizontale Querschnitt der Pyramide $25m². $


$ \:\:\:\:\:\: $ $ \qquad $ Vom Punkt $T \begin{pmatrix} 50\\-50\\100 \end{pmatrix} $ fällt Licht in Richtung $ \begin{pmatrix} -1-a\\3-a\\a-2 \end{pmatrix} .$

$ \:\:\:\:\:\: $ $ \:\:\: $ $ \: \Large \Bigg\downarrow $ $ \normalsize \textcolor{red}{e)} \: Zeige,\: dass\: vom\: Punkt\: T\: je\: ein\: Lichtstrahl\: auf\: die\: Punkte\: B\: und\: S\: fällt. $

$ \:\:\:\:\:\: $ $ \qquad $ Prüfe ob $B$ auf $T$ liegt:

$ \:\:\:\:\:\: $ $ \qquad $ Setzte: $ \begin{pmatrix} 0\\100\\0 \end{pmatrix} = \begin{pmatrix} 50\\-50\\100 \end{pmatrix} + r\cdot \begin{pmatrix} -1-a\\3-a\\a-2 \end{pmatrix} $

$ \:\:\:\:\:\: $ $ \:\:\: $ $ \: \Large \Bigg\downarrow $ $ \normalsize Stelle\: in\: Lineares\: Gleichungssystem\: um\: (LGS) $

$ \:\:\:\:\:\: $ $ \qquad $ $ \begin{cases} 0 &= 50-r-ar \qquad\:\:\:\:\:\:\: (I)\\ 100 &= -50+3r-ar \qquad (II)\\ 0 &= 100-2r+ar \qquad (III) \end{cases} $

$ \:\:\:\:\:\: $ $ \qquad $ $(I)+(III): 0=150-3r \: \longrightarrow r=50$

$ \:\:\:\:\:\: $ $ \qquad $ Setzte $r=50$ in (II) ein

$ \:\:\:\:\:\: $ $ \qquad $ $ \Longrightarrow \:\: 100=-50+3(50)-a(50) $

$ \:\:\:\:\:\: $ $ \qquad $ $ \Longrightarrow \:\: 0=-50a \:\: \longrightarrow a=0 $

$ \:\:\:\:\:\: $ $ \qquad $ Setzte $r$ und $a$ in $ \: \begin{pmatrix} 50\\-50\\100 \end{pmatrix} + 50\cdot \begin{pmatrix} -1-0\\3-0\\0-2 \end{pmatrix} = \begin{pmatrix} 0\\100\\0 \end{pmatrix} $

$ \:\:\:\:\:\: $ $ \qquad $ Für $r=50$ und $a=0$ liegt $B$ auf $T.$


$ \:\:\:\:\:\: $ $ \qquad $ Prüfe ob $S$ auf $T$ liegt:

$ \:\:\:\:\:\: $ $ \qquad $ Setzte: $ \begin{pmatrix} -50\\50\\50 \end{pmatrix} = \begin{pmatrix} 50\\-50\\100 \end{pmatrix} + r\cdot \begin{pmatrix} -1-a\\3-a\\a-2 \end{pmatrix} $

$ \:\:\:\:\:\: $ $ \:\:\: $ $ \: \Large \Bigg\downarrow $ $ \normalsize Stelle\: in\: Lineares\: Gleichungssystem\: um\: (LGS) $

$ \:\:\:\:\:\: $ $ \qquad $ $ \begin{cases} -50 &= 50-r-ar \qquad\:\:\:\:\:\:\: (I)\\ 50 &= -50+3r-ar \qquad (II)\\ 50 &= 100-2r+ar \qquad (III) \end{cases} $

$ \:\:\:\:\:\: $ $ \qquad $ $(I)-(II): -200=-4r \: \longrightarrow r=50$

$ \:\:\:\:\:\: $ $ \qquad $ Setzte $r=50$ in (III) ein

$ \:\:\:\:\:\: $ $ \qquad $ $ \Longrightarrow \:\: -50=-2(50)-50a $

$ \:\:\:\:\:\: $ $ \qquad $ $ \Longrightarrow \:\: 50=-50a \:\: \longrightarrow a=-1 $

$ \:\:\:\:\:\: $ $ \qquad $ Setzte $r$ und $a$ in $ \: \begin{pmatrix} 50\\-50\\100 \end{pmatrix} + 50\cdot \begin{pmatrix} -1+1\\3+1\\-1-2 \end{pmatrix} = \begin{pmatrix} 0\\150\\-50 \end{pmatrix} $