Home » Mathematik » Winkel und Abstände I

Winkel und Abstände I

I- Winkel



  1. Winkel zwischen zwei Geraden $g_1$ und $g_2$


  2. Schneiden sich zwei Geraden $g:\vec{x}=\vec{p}+r\cdot \vec{u}$ und $h:\vec{x}=\vec{q+s\cdot\vec{v}}$, dann gilt für ihren Schnittwinkel $\alpha$:

    $\qquad\qquad\qquad\qquad$ $ cos\: \alpha = \large \frac{|\vec{u}\cdot\vec{v}|}{|\vec{u}|\cdot|\vec{v}|} $.

    Dabei ist der Schnittwinkel immer der kleinere der beiden Scheitelwinkel, die entstehen, wenn zwei Geraden sich schneiden.

    Skizze



    Beispielaufgaben

    Berechne Schnittpunkt und Schnittwinkel der beiden Geraden

    $ g:\vec{x} = \begin{pmatrix} 0\\1\\3 \end{pmatrix} +r\cdot \begin{pmatrix} 1\\2\\-1 \end{pmatrix} $ $\:\:$ und $\:\:$ $ h:\vec{x} = \begin{pmatrix} 1\\3\\2 \end{pmatrix} +s\cdot \begin{pmatrix} 3\\2\\-5 \end{pmatrix} . $


    Lösung
    $ g:\vec{x} = \begin{pmatrix} 0\\1\\3 \end{pmatrix} +r\cdot \begin{pmatrix} 1\\2\\-1 \end{pmatrix} $ $\:\:$ und $\:\:$ $ h:\vec{x} = \begin{pmatrix} 1\\3\\2 \end{pmatrix} +s\cdot \begin{pmatrix} 3\\2\\-5 \end{pmatrix} $

    Die Richtungsvektoren sind nicht linear abhängig. Also, entweder schneiden sie sich oder sie sind windschief.


    Vektorgleichung (Einsatz $g=h$):

    $ \Longleftrightarrow $ $ \begin{pmatrix} 0\\1\\3 \end{pmatrix} +r\cdot \begin{pmatrix} 1\\2\\-1 \end{pmatrix} $ $=$ $ \begin{pmatrix} 1\\3\\2 \end{pmatrix} +s\cdot \begin{pmatrix} 3\\2\\-5 \end{pmatrix} $

    Verwandle in Gleichungssystem:

    $ \Longleftrightarrow $ $ \begin{cases} 0+1\cdot r &=\:\:1+3\cdot s \\ 1+2\cdot r &=\:\:3+2\cdot s \\ 3+(-1)\cdot r &=\:\:2+(-5)\cdot s \\ \end{cases} $ $ \Longrightarrow $ $ \begin{cases} r &=\:\:1+3\cdot s \qquad\:\:\: (I)\\ 1+2\cdot r &=\:\:3+2\cdot s \qquad\:\:\: (II)\\ 3-1\cdot r &=\:\:2-5\cdot s \qquad \:\:\: (III) \end{cases} $

    $ \qquad $ $ \Large \Bigg\downarrow $ $ \normalsize Setze\: (I)\: in\: (II)\: oder\: (III)\: ein $

    $ \qquad $ $In\: (II)$ $\Longrightarrow$ $1+2(1+3s)=3+2s$

    $ \qquad\qquad\:\:\:\:\: $ $\Longleftrightarrow$ $3+6s=3+2s$ $\qquad | -3/+2s$

    $ \qquad\qquad\:\:\:\:\: $ $\longrightarrow$ $s=0$

    $ \qquad $ $ \Large \Bigg\downarrow $ $ \normalsize Setze\: s\: in\: (I)\: ein $

    $ \qquad\qquad\:\:\:\:\: $ $\Longrightarrow$ $r=1+3(0)$

    $ \qquad\qquad\:\:\:\:\: $ $\longrightarrow$ $r=1$

    $ \qquad $ $ \Large \Bigg\downarrow $ $ \normalsize Setze\: r=1\: und\: s=0\: in\: Geraden\: g\: oder\: h\: ein $

    $ \qquad $ $In\: g:$

    $ \qquad $ $ \Large s= $ $ \begin{pmatrix} 0\\1\\3 \\ \end{pmatrix} +(1)\cdot \begin{pmatrix} 1\\2\\-1 \\ \end{pmatrix} $ $ \Large = $ $ \begin{pmatrix} 0+1\\1+2\\3-1 \\ \end{pmatrix} $ $ \Large = $ $ \begin{pmatrix} 1\\3\\2 \\ \end{pmatrix} $


    Schnittpunkt:

    $\qquad\qquad\qquad\qquad$ $\:\:$ $ \Large s \begin{pmatrix} 1\\3\\2 \\ \end{pmatrix} $


    Schnittwinkel:
    Benutze die Richtungsvektoren beiden Geraden:

    $ \qquad $ Berechne das Skalarprodukt der Richtungsvektoren:

    $ \qquad\qquad \begin{pmatrix} 1\\2\\-1 \\ \end{pmatrix} \cdot \begin{pmatrix} 3\\2\\-5 \\ \end{pmatrix} $ $ \Large = $ $ 1\cdot 3+2\cdot 2-1\cdot (-5) $ $ \Large = $ $12$

    $ \qquad $ Betrag von: $\begin{pmatrix} 1\\2\\-1 \\ \end{pmatrix}$ ist gleich $ \sqrt{1^2+2^2+(-1)^2} $ $ \Large = $ $2,449$

    $ \qquad $ Betrag von: $\begin{pmatrix} 3\\2\\-5 \\ \end{pmatrix}$ ist gleich $ \sqrt{3^2+2^2+(-5)^2} $ $ \Large = $ $6,164$

    $ \qquad $ Also der Winkel ist gleich:

    $ \qquad\qquad $ $ \alpha = cos^{-1} (\frac{12}{2,449\: \cdot \:6,164}) $ $ \Large = $ $37,371^{\circ}$


    Schnittwinkel:

    $\qquad\qquad\qquad\qquad$ $\:\:$ $ \large \alpha=37,371^{\circ} $



  3. Winkel zwischen eine Gerade $g$ und eine Ebene $E$


  4. $\:\:$Schneiden sich eine Gerade $g:\vec{x}=\vec{p}+t\cdot \vec{u}$ und eine Ebene $E:\vec{n}\cdot[\vec{x}-\vec{a}]$, dann gilt für
    $\:\:$ihren Schnittwinkel $\alpha$ zwischen dem Richtungsvektor der Gerade und dem Normalenvektor $\:\:$der Ebene:

    $\qquad\qquad\qquad\qquad$ $ cos\: \alpha = \large \frac{|\vec{r}\cdot\vec{n}|}{|\vec{r}|\cdot|\vec{n}|} $.

    $\:\:$Ist $\vec{s}$ ein Richtungsvektor der Schnittgeraden zwischen der Ebene E und der zu E
    $\:\:$senkrechten Ebene F, in der $g$ liegt, dann gilt für den Winkel $\beta$ zwischen $\vec{r}$ und $\vec{s}:$ $\:\:\beta=90{^\circ}-\alpha.$ Es gilt also

    $\qquad\qquad\qquad\qquad$ $ sin\: \beta = \large \frac{|\vec{r}\cdot\vec{n}|}{|\vec{r}|\cdot|\vec{n}|} $.



    Beispielaufgabe

    Berechne den Schnittwinkel zwischen der Gerade $g$ und der Ebene $E.$

    $ g:\vec{x} = \begin{pmatrix} 3\\6\\-5 \end{pmatrix} +t\cdot \begin{pmatrix} -1\\4\\3 \end{pmatrix} $ $\:\:$ und $\:\:$ $ E: \begin{bmatrix}\vec{x}- \begin{pmatrix} 2\\9\\3 \end{pmatrix} \end{bmatrix} \cdot \begin{pmatrix} 2\\-2\\3 \end{pmatrix} $


    Lösung
    $ g:\vec{x} = \begin{pmatrix} 3\\6\\-5 \end{pmatrix} +t\cdot \begin{pmatrix} -1\\4\\3 \end{pmatrix} $ $\:\:$ und $\:\:$ $ E: \begin{bmatrix}\vec{x}- \begin{pmatrix} 2\\9\\3 \end{pmatrix} \end{bmatrix} \cdot \begin{pmatrix} 2\\-2\\3 \end{pmatrix} $

    Bestimme die Koordinatenform von $E$:

    $ \:\:\: $ $ \: \Large \Bigg\downarrow $ $ \normalsize Multipliziere\: E\: aus $

    $ \:\:\: $ $ E: \begin{bmatrix}\vec{x}- \begin{pmatrix} 2\\9\\3 \end{pmatrix} \end{bmatrix} \cdot \begin{pmatrix} 2\\-2\\3 \end{pmatrix} $ $=$ $ \begin{pmatrix} x\\y\\z \end{pmatrix} \cdot \begin{pmatrix} 2\\-2\\3 \end{pmatrix}- \begin{pmatrix} 2\\9\\3 \end{pmatrix} \cdot \begin{pmatrix} 2\\-2\\3 \end{pmatrix} =0 $

    $ \:\:\: $ $ \: \Large \Bigg\downarrow $ $ \normalsize Skalarprodukt\: berechnen $

    $ \:\:\: $ $ \begin{pmatrix} x\\y\\z \end{pmatrix} \cdot \begin{pmatrix} 2\\-2\\3 \end{pmatrix} $ $=$ $ 2x-2y+3z $ $\qquad | \qquad $ $ \begin{pmatrix} 2\\9\\3 \end{pmatrix} \cdot \begin{pmatrix} 2\\-2\\3 \end{pmatrix} = 2\cdot2+9\cdot (-2)+3\cdot 3=-5 $

    $ \:\:\: $ $ \: \Large \Bigg\downarrow $ $ \normalsize Setze\: beiden\:Ergebnisse\: in\: die\: ausmultiplizierte\: Normalenform\: ein $

    $ \:\:\:\:\:\: $ $ \longrightarrow $ die Koordinatenform: $E:2x-2y+3z=-5$

    $ \qquad\:\:\:\:\:\: $ und den Normalenvektor: $\vec{n}=\begin{pmatrix}2\\-2\\3\end{pmatrix}$

    $ \:\:\: $ $ \: \Large \Bigg\downarrow $ $ \normalsize Berechne\: Skalarprodukt\: von\: Normalenvektor\: (E)\: und\: Richtungsvektor\: (g) $

    $ \:\:\: $ $ \begin{pmatrix} -1\\4\\3 \end{pmatrix} \cdot \begin{pmatrix} 2\\-2\\3 \end{pmatrix} = -1\cdot 2+4\cdot (-2)+3\cdot 3=-1 $

    $ \:\:\: $ $ \: \Large \Bigg\downarrow $ $ \normalsize Berechne\: den\: Betrag\: von\:(E)\: und\: (g) $

    $ \:\:\: $ Betrag von $ \begin{pmatrix} -1\\4\\3 \end{pmatrix} $ ist $ \sqrt{(-1)^2+4^2+3^2}=5,09 $

    $ \:\:\: $ Betrag von $ \begin{pmatrix} 2\\-2\\3 \end{pmatrix} $ ist $ \sqrt{2^2+(-2)^2+3^2}=4,12 $

    $ \:\:\: $ $ \: \Large \Bigg\downarrow $ $ \normalsize Berechne\: der\: Winkel $

    $ \:\:\:\:\: $ $ \alpha=sin^{-1} \frac{|-1|}{5,09\: \cdot \:4,12}=2,73^{\circ} $

    Der Schnittwinkel zwischen der Gerade $g$ und der Ebene $E$ lautet:

    $\qquad\qquad\qquad\qquad$ $\:\:$ $ \large \alpha=2,73^{\circ} $



  5. Winkel zwischen zwei Ebenen $E_1$ und $E_2$


  6. $\:\:\:$Schneiden sich zwei Ebenen $E_1$ und $E_2$, mit den Normalenvektor $\vec{n_1}$ und $\vec{n_2}$,
    $\:\:$dan gilt für den Schnittwinkel $\alpha$:

    $\qquad\qquad\qquad\qquad$ $ cos\: \alpha = \large \frac{|\vec{n_1}\cdot\vec{n_2}|}{|\vec{n_1}|\cdot|\vec{n_2}|} $.



    Beispielaufgabe

    Berechne den Schnittwinkel zwischen $E_1$ und $E_2$.

    $\qquad$ $E_1: 3x+2y-z=1 \:\:\:\:$ und $\:\:\:\: E_2: -2x+2y+5=-1$

    Lösung
    $\qquad$ $E_1: 3x+2y-z=1 \:\:\:\:$ und $\:\:\:\: E_2: -2x+2y+5=-1$

    $ \qquad $ $ \Large \Bigg\downarrow $ $ \normalsize Schreibe\: Normalenvektoren\: von\: E_1\: und\: E_2 $

    $ \qquad $ $ \vec{n_1}= \begin{pmatrix} 3\\2\\-1 \end{pmatrix} $ $\:\:\:\:$ und $\:\:\:\:$ $ \vec{n_2}= \begin{pmatrix} -2\\2\\5 \end{pmatrix} $

    $ \qquad $ $ \Large \Bigg\downarrow $ $ \normalsize Berechne\: das\: Skalarprodukt\: der\: \:beiden\: Normalenvektoren $

    $ \qquad $ $ \begin{pmatrix} 3\\2\\-1 \end{pmatrix} \cdot \begin{pmatrix} -2\\2\\5 \end{pmatrix} =3\cdot (-2)+2\cdot 2+ (-1)\cdot 5=-7 $

    $ \qquad $ $ \Large \Bigg\downarrow $ $ \normalsize Berechne\: den\: Betrag\: von\: \vec{n_1} \: und\: \vec{n_2} $

    $ \qquad $ Betrag von $\vec{n_1}$ ist gleich: $|\vec{n_1}|=\sqrt{3^2+2^2+(-1)^2}=3,741$

    $ \qquad $ Betrag von $\vec{n_2}$ ist gleich: $|\vec{n_2}|=\sqrt{(-2)^2+2^2+5^2}=5,744$

    $ \qquad $ $ \Large \Bigg\downarrow $ $ \normalsize Berechne\: der\: Winkel\: \alpha $

    $ \qquad $ $ \alpha=cos^{-1}\frac{|-7|}{3.741\: \cdot \: 5,744}=70,988^{\circ} $


    $ \qquad $ Schnittwinkel:

    $\qquad\qquad\qquad\qquad$ $\:\:$ $ \large \alpha\approx 70,99^{\circ} $


Übungsaufgaben – Winkel

Berechne Schnittpunkt und Schnittwinkel der beiden Geraden

  1. $g: \vec{x}= \begin{pmatrix} 4\\3\\1 \end{pmatrix}+ r\cdot \begin{pmatrix} -1\\-1\\1 \end{pmatrix} $ $\:\:\:$ und $\:\:\:$ $h: \vec{x}= \begin{pmatrix} -3\\-4\\-1 \end{pmatrix}+ s\cdot \begin{pmatrix} 2\\2\\1 \end{pmatrix} $

    Lösung
    $ g:\vec{x} = \begin{pmatrix} 4\\3\\1 \end{pmatrix} +r\cdot \begin{pmatrix} -1\\-1\\1 \end{pmatrix} $ $\:\:$ und $\:\:$ $ h:\vec{x} = \begin{pmatrix} -3\\-4\\-1 \end{pmatrix} +s\cdot \begin{pmatrix} 2\\2\\1 \end{pmatrix} $

    Die Richtungsvektoren sind nicht linear abhängig. Also, entweder schneiden sie sich oder sie sind windschief.


    Vektorgleichung (Einsatz $g=h$):

    $ \Longleftrightarrow $ $ \begin{pmatrix} 4\\3\\1 \end{pmatrix} +r\cdot \begin{pmatrix} -1\\-1\\1 \end{pmatrix} $ $=$ $ \begin{pmatrix} -3\\-4\\-1 \end{pmatrix} +s\cdot \begin{pmatrix} 2\\2\\1 \end{pmatrix} $

    Verwandle in Gleichungssystem:

    $ \Longleftrightarrow $ $ \begin{cases} 4+(-1)\cdot r &=\:\:(-3)+2\cdot s \\ 3+(-1)\cdot r &=\:\:(-4)+2\cdot s \\ 1+1\cdot r &=\:\:(-1)+1\cdot s \\ \end{cases} $ $ \Longrightarrow $ $ \begin{cases} 4-r &=\:\:-3+2\cdot s \qquad\:\:\: (I)\\ 3-r &=\:\:-4+2\cdot s \qquad\:\:\: (II)\\ 1+r &=\:\:-1+1\cdot s \qquad \:\:\: (III) \end{cases} $

    $ \qquad $ $ \Large \Bigg\downarrow $ $ \normalsize Addiere\: (II)\: und\: (III) $

    $ \qquad $ $\Longrightarrow$ $4=-5+3s$ $\qquad | +5/(:3)$

    $ \qquad\qquad $ $\longrightarrow$ $s=3$

    $ \qquad $ $ \Large \Bigg\downarrow $ $ \normalsize Setze\: s\: in\: (I)\: ein $

    $ \qquad $ $\Longrightarrow$ $4-r=-3+2\cdot3$

    $ \qquad $ $\Longrightarrow$ $4-r=3$ $\qquad | -4/:(-1)$

    $ \qquad\qquad $ $\longrightarrow$ $r=1$

    $ \qquad $ $ \Large \Bigg\downarrow $ $ \normalsize Setze\: r=1\: und\: s=3\: in\: Geraden\: g\: oder\: h\: ein $

    $ \qquad $ $In\: h:$

    $ \qquad $ $ \Large s= $ $ \begin{pmatrix} -3\\-4\\-1 \\ \end{pmatrix} +(3)\cdot \begin{pmatrix} 2\\2\\1 \\ \end{pmatrix} $ $ \Large = $ $ \begin{pmatrix} -3+6\\-4+6\\-1+3 \\ \end{pmatrix} $ $ \Large = $ $ \begin{pmatrix} 3\\2\\2 \\ \end{pmatrix} $


    Schnittpunkt:

    $\qquad\qquad\qquad\qquad$ $\:\:$ $ \Large s \begin{pmatrix} 3\\2\\2 \\ \end{pmatrix} $


    Schnittwinkel:
    Benutze die Richtungsvektoren beiden Geraden:

    $ \qquad $ Berechne das Skalarprodukt der Richtungsvektoren:

    $ \qquad\qquad \begin{pmatrix} -1\\-1\\1 \\ \end{pmatrix} \cdot \begin{pmatrix} 2\\2\\1 \\ \end{pmatrix} $ $ \Large = $ $ -1\cdot 2+(-1)\cdot 2+1\cdot 1 $ $ \Large = $ $-3$

    $ \qquad $ Betrag von: $\begin{pmatrix} -1\\-1\\1 \\ \end{pmatrix}$ ist gleich $ \sqrt{(-1)^2+(-1)^2+1^2} $ $ \Large = $ $1,732$

    $ \qquad $ Betrag von: $\begin{pmatrix} 2\\2\\1 \\ \end{pmatrix}$ ist gleich $ \sqrt{2^2+2^2+1^2} $ $ \Large = $ $3$

    $ \qquad $ Also der Winkel ist gleich:

    $ \qquad\qquad $ $ \alpha = cos^{-1} (\frac{-3}{1,732\: \cdot \:3}) $ $ \Large = $ $125,264^{\circ}$


    Schnittwinkel:

    $\qquad\qquad\qquad\qquad$ $\:\:$ $ \large \alpha=125,264^{\circ} $



  2. $g: \vec{x}= \begin{pmatrix} 3\\2\\0 \end{pmatrix}+ r\cdot \begin{pmatrix} -1\\2\\4 \end{pmatrix} $ $\:\:\:$ und $\:\:\:$ $h: \vec{x}= \begin{pmatrix} 2\\1\\0 \end{pmatrix}+ s\cdot \begin{pmatrix} -2\\1\\4 \end{pmatrix} $

    $\:\:$
    $s\begin{pmatrix}4\\0\\-4\end{pmatrix};$ $\alpha=17,753^{\circ}$



  3. $g: \vec{x}= \begin{pmatrix} -1\\-2\\6 \end{pmatrix}+ r\cdot \begin{pmatrix} 2\\2\\-1 \end{pmatrix} $ $\:\:\:$ und $\:\:\:$ $h: \vec{x}= \begin{pmatrix} 1\\3\\11 \end{pmatrix}+ s\cdot \begin{pmatrix} 0\\1\\2 \end{pmatrix} $

    $\:\:$
    $s\begin{pmatrix}1\\0\\5\end{pmatrix};$ $\alpha=90^{\circ}$



Berechne den Schnittwinkel zwischen der Gerade $g$ und der Ebene $E$.

  1. $ g:\vec{x} = \begin{pmatrix} 2\\2\\1 \end{pmatrix} +r\cdot \begin{pmatrix} 1\\-1\\1 \end{pmatrix} $ $\:\:$ und $\:\:$ $ E:\vec{x} = \begin{pmatrix} 1\\1\\5 \end{pmatrix} +s\cdot \begin{pmatrix} 2\\0\\1 \end{pmatrix} +t\cdot \begin{pmatrix} -1\\-1\\3 \end{pmatrix} $

    Lösung
    $ g:\vec{x} = \begin{pmatrix} 2\\2\\1 \end{pmatrix} +r\cdot \begin{pmatrix} 1\\-1\\1 \end{pmatrix} $ $\:\:$ und $\:\:$ $ E:\vec{x} = \begin{pmatrix} 1\\1\\5 \end{pmatrix} +s\cdot \begin{pmatrix} 2\\0\\1 \end{pmatrix} +t\cdot \begin{pmatrix} -1\\-1\\3 \end{pmatrix} $

    $ \qquad $ $ \Large \Bigg\downarrow $ $ \normalsize Gleiche\: die\: Vektoren:\: Einsatz\: (g=E) $

    $ \begin{pmatrix} 2\\2\\1 \end{pmatrix} +r\cdot \begin{pmatrix} 1\\-1\\1 \end{pmatrix} $ $=$ $ \begin{pmatrix} 1\\1\\5 \end{pmatrix} +s\cdot \begin{pmatrix} 2\\0\\1 \end{pmatrix} +t\cdot \begin{pmatrix} -1\\-1\\3 \end{pmatrix} $

    $ \qquad $ $ \Large \Bigg\downarrow $ $ \normalsize Schreibe\: als\: Lineares\: Gleichungssystem\: (LGS) $

    $ \qquad $ $ \begin{cases} 2+r &=1+2s-t\\ 2-r &=1+0s-t\\ 1+r &=5+s+3t \end{cases} $

    $ \qquad $ $ \Large \Bigg\downarrow $ $ \normalsize Bringe\: Zahlen\: nach\: rechts\: und\: Variablen\: nach\: links $

    $ \qquad $ $ \begin{cases} r-2s+t &=-1 \qquad (I)\\ -r+t &=-1 \qquad (II)\\ r-s-3t &=4 \qquad\:\:\: (III) \end{cases} $

    $ \qquad $ $ \Large \Bigg\downarrow $ $ \normalsize Schreibe\: (II)\: nach\: r $

    $ \qquad $ $ \begin{cases} r-2s+t &=-1\\ r &=1+t\\ r-s-3t &=4 \end{cases} $

    $ \qquad $ $ \Large \Bigg\downarrow $ $ \normalsize Setzte\: r\: in\: (I)\: und\: (III) $

    $ \qquad $ $ \begin{cases} 1+t-2s+t &=-1\\ 1+t-s-3t &=4 \end{cases} $ $\:\:$ $\Longrightarrow$ $\:\:$ $ \begin{cases} 2t-2s &=-2\\ -2t-s &=3 \end{cases} $
    $ \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad $ $ \Large \Bigg\downarrow $ $ \normalsize Addiere\: (I)\: und\: (III) $
    $ \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad $ $ -3s=1 \qquad | :(-3) $

    $ \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad $ $\longrightarrow$ $ s=-\frac{1}{3} $

    $ \qquad $ $ \Large \Bigg\downarrow $ $ \normalsize Setzte\: s\: in\: (I)\: und\: (III) $

    $ \qquad $ $ \begin{cases} r-2\cdot (-\frac{1}{3})+t &=-1\\ r-1\cdot (-\frac{1}{3})-3t &=4 \end{cases} $ $\:\:$ $\underrightarrow{Fasse\: zusammen}$ $\:\:$ $ \begin{cases} r+t &=-\frac{5}{3}\\ r-3t &=\frac{11}{3} \end{cases} $

    $ \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad $ $ \Large \Bigg\downarrow $ $ \normalsize Subtrahiere $

    $ \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad $ $ 4t=-\frac{16}{3} \qquad | :(-\frac{16}{3}) $

    $ \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad $ $ \longrightarrow $ $ t=-\frac{4}{3} $

    $ \qquad $ $ \Large \Bigg\downarrow $ $ \normalsize Setzte\: t\: in\: r=1+t\: ein $

    $ \qquad\:\: $ $ r=1-\frac{4}{3} $ $ \longrightarrow $ $ r=-\frac{1}{3} $

    $ \qquad $ $ \Large \Bigg\downarrow $ $ \normalsize Setzte\: die\: Werte\: in\: Ebene\: ein $

    $ \qquad $ $ \begin{pmatrix} 1\\1\\5 \end{pmatrix} +(-\frac{1}{3})\cdot \begin{pmatrix} 2\\0\\1 \end{pmatrix} +(-\frac{4}{3})\cdot \begin{pmatrix} -1\\-1\\3 \end{pmatrix} $ $=$ $ \begin{pmatrix} 1-\frac{2}{3}+\frac{4}{3}\\ 1+0+\frac{4}{3}\\ 5-\frac{1}{3}-4 \end{pmatrix} $ $=$ $ \begin{pmatrix} \frac{5}{3}\\ \frac{7}{3}\\ \frac{2}{3} \end{pmatrix} $


    $ \qquad $ Schnittpunkt:

    $\qquad\qquad\qquad\qquad$ $\:\:$ $ \Large s \begin{pmatrix} \frac{5}{3}\\ \frac{7}{3}\\ \frac{2}{3} \end{pmatrix} $


    $ \qquad $ Schnittwinkel:

    $ \qquad $ $ \Large \Bigg\downarrow $ $ \normalsize Schreibe\: E\: in\: Koordinatenform $

    $ \qquad\qquad $ – Bestimme die Normalenform von $E:$

    $ \qquad\qquad\qquad $ $ \Large \Bigg\downarrow $ $ \normalsize Bestimme\: das\: Kreuzprodukt\: der\: Richtungsvektoren $

    $ \qquad\qquad\qquad $ $ \begin{pmatrix} 2\\0\\1 \end{pmatrix} \times \begin{pmatrix} -1\\-1\\3 \end{pmatrix} $ $=$ $ \begin{pmatrix} 0\cdot 3-1\cdot (-1)\\ 1\cdot (-1)-2\cdot 3\\ 2\cdot (-1)-0\cdot (-1) \end{pmatrix} $ $=$ $ \begin{pmatrix} 1\\-7\\-2 \end{pmatrix} $

    $ \qquad\qquad\qquad $ $\longrightarrow$ Normalengleichung: $ E:\begin{bmatrix} x- \begin{pmatrix} 1\\1\\5 \end{pmatrix} \end{bmatrix} \cdot \begin{pmatrix} 1\\-7\\-2 \end{pmatrix} =0 $

    $ \qquad\qquad $ – Bestimme die Koordinatenform von $E:$

    $ \qquad\qquad\qquad $ $ E:\begin{bmatrix} x- \begin{pmatrix} 1\\1\\5 \end{pmatrix} \end{bmatrix} \cdot \begin{pmatrix} 1\\-7\\-2 \end{pmatrix} =0 $

    $ \qquad\qquad\qquad $ $ \Large \Bigg\downarrow $ $ \normalsize Multipliziere\: aus $

    $ \qquad\qquad\qquad $ $ \begin{pmatrix} x\\y\\z \end{pmatrix} \cdot \begin{pmatrix} 1\\-7\\-2 \end{pmatrix} = x-7y-2z $

    $ \qquad\qquad\qquad $ $ \begin{pmatrix} 1\\1\\5 \end{pmatrix} \cdot \begin{pmatrix} 1\\-7\\-2 \end{pmatrix} = 1\cdot1+1\cdot (-7)+5\cdot (-2)=-16 $

    $ \qquad\qquad\qquad $ $ \Large \Bigg\downarrow $ $ \normalsize Setzte\: die\: beiden\: Ergebnisse\: in\: die\: Normaleform\: ein $

    $ \qquad\qquad\qquad $ $\longrightarrow$ Koordinatenform: $E:x-7y-2z=-16$

    $ \qquad\qquad\qquad $ $\longrightarrow$ Normalenvektor: $ \vec{n}= \begin{pmatrix} 1\\-7\\-2 \end{pmatrix} $

    $ \qquad $ $ \Large \Bigg\downarrow $ $ \normalsize Berechne\: das\: Skalarprodukt\: von\: Normalenvektor(E)\: und\: Richtungsvektor(g) $

    $ \qquad $ $ \begin{pmatrix} 1\\-1\\1 \end{pmatrix} \cdot \begin{pmatrix} 1\\-7\\-2 \end{pmatrix} = 1\cdot 1+(-1)\cdot (-7)+1\cdot (-2)=6 $

    $ \qquad $ $ \Large \Bigg\downarrow $ $ \normalsize Berechne\: Betrag\: von\: (E)\: und\: (g) $

    $ \qquad\qquad $ Betrag von $ \begin{pmatrix} 1\\-1\\1 \end{pmatrix} $ ist $ \sqrt{1^2+(-1)^2+1^2}=1,732 $

    $ \qquad\qquad $ Betrag von $ \begin{pmatrix} 1\\-7\\-2 \end{pmatrix} $ ist $ \sqrt{1^2+(-7)^2+(-2)^2}=7,348 $

    $ \qquad $ $ \Large \Bigg\downarrow $ $ \normalsize Berechne\: der\: Winkel $

    $ \qquad $ $\longrightarrow$ $ \large \alpha=sin^{-1}=\frac{6}{1,732\: \cdot \: 7,348}=28,128^{\circ} $


    $ \qquad $ Schnittwinkel:

    $\qquad\qquad\qquad\qquad$ $\:\:$ $ \large \alpha\approx28,13^{\circ} $



  2. $ g:\vec{x} = \begin{pmatrix} 2\\-3\\4 \end{pmatrix} +r\cdot \begin{pmatrix} 6\\2\\4 \end{pmatrix} $ $\:\:$ und $\:\:$ $ E: \begin{bmatrix} \vec{x} – \begin{pmatrix} 1\\0\\-5 \end{pmatrix} \end{bmatrix} +s\cdot \begin{pmatrix} 3\\5\\-1 \end{pmatrix} $

    $\:\:$
    $\alpha\approx32,83^{\circ}$



  3. $ g:\vec{x} = \begin{pmatrix} 2\\8\\8 \end{pmatrix} +r\cdot \begin{pmatrix} 3\\4\\3 \end{pmatrix} $ $\:\:$ und $\:\:$ $ E:2x-4y+3z=5 $

    $\:\:$
    $\alpha\approx1,83^{\circ}$



Berechne den Schnittwinkel zwischen den Ebenen $E_1$ und $E_2$.

  1. $ E_1: \begin{bmatrix} \vec{x} – \begin{pmatrix} 4\\-3\\5 \end{pmatrix} \end{bmatrix} \cdot \begin{pmatrix} 2\\-4\\1 \end{pmatrix} =0 $ $\:\:$ und $\:\:$ $ E_2:-6x+4y-3z=4 $

    Lösung
    $ E_1: \begin{bmatrix} \vec{x} – \begin{pmatrix} 4\\-3\\5 \end{pmatrix} \end{bmatrix} \cdot \begin{pmatrix} 2\\-4\\1 \end{pmatrix} =0 $ $\:\:$ und $\:\:$ $ E_2:-6x+4y-3z=4 $

    $ \qquad $ $ \Large \Bigg\downarrow $ $ \normalsize Für\: Normalenvektor\: von\: E_1\: Schreibe\: in\: der\: Koordinatenform $

    $ \qquad $ $ E_1: \begin{bmatrix} \begin{pmatrix} x\\y\\z \end{pmatrix} – \begin{pmatrix} 4\\-3\\5 \end{pmatrix} \end{bmatrix} \cdot \begin{pmatrix} 2\\-4\\1 \end{pmatrix} =0 $

    $ \qquad $ $ \Large \Bigg\downarrow $ $ \normalsize Multipliziere\: aus $

    $ \qquad $ $ \begin{pmatrix} x\\y\\z \end{pmatrix} \cdot \begin{pmatrix} 2\\-4\\1 \end{pmatrix} = 2x-4y+z $

    $ \qquad $ $ \begin{pmatrix} 4\\-3\\5 \end{pmatrix} \cdot \begin{pmatrix} 2\\-4\\1 \end{pmatrix} = 4\cdot2+ (-3)\cdot(-4)+5\cdot 1=25 $

    $ \qquad $ Die Koordinatenform lautet: $E_1: 2x-4y+z=25$

    $ \qquad $ Den Normalenvektor von $E_1$ lautet: $n_1 = \begin{pmatrix} 2\\-4\\1 \end{pmatrix} $

    $ \qquad $ Den Normalenvektor von $E_2$ lautet: $n_2 = \begin{pmatrix} -6\\4\\-3 \end{pmatrix} $

    $ \qquad $ Schnittwinkel

    $ \qquad\qquad\qquad $ $ \alpha=cos^{-1} \frac { \large \begin{vmatrix} \begin{pmatrix} 2\\-4\\1 \end{pmatrix} \cdot \begin{pmatrix} -6\\4\\-3 \end{pmatrix} \end{vmatrix} } { \large \begin{vmatrix} \begin{pmatrix} 2\\-4\\1 \end{pmatrix} \end{vmatrix} \cdot \begin{vmatrix} \begin{pmatrix} -6\\4\\-3 \end{pmatrix} \end{vmatrix} }= 29,987^{\circ} $

    $\qquad\qquad\qquad\qquad$ $\:\:$ $ \large \alpha\approx29,99^{\circ} $



  2. $ E_1:6x-2y-3z=7 $ $\:\:$ und $\:\:$ $ E_2:\vec{x} = \begin{pmatrix} 2\\0\\-4 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 3\\-4\\2 \end{pmatrix} + \mu \cdot \begin{pmatrix} 4\\-1\\5 \end{pmatrix} $

    $\:\:$
    $n_2$ $=$ $ \begin{pmatrix} 18\\-7\\13 \end{pmatrix}, $ $\:$ $\alpha\approx35,3^{\circ}$



  3. $ E_1:2x+y+2z=-8 $ $\:\:$ und $\:\:$ $ E_2:6x+3y+2z=-12 $

    $\:\:$
    $\alpha\approx25,20^{\circ}$