Home » Mathematik » Analytische Geometrie / Abi Berlin

Analytische Geometrie / Abi Berlin

Übungsaufgaben



Lösung
a) Zeige, dass das Viereck $ABFE$ ein Trapez ist.

$ \:\:\: $ $ \: \Large \Bigg\downarrow $ $ \normalsize Berechne\: die\: Länge\: AE\: und\: BF $

$\qquad$ $ |\overline{AE}|=\sqrt{(0-0)^2+(40-0)^2+(120-0)^2}=126,491 $

$\qquad$ $ |\overline{BF}|=\sqrt{(0-0)^2+(58-20)^2+(114-0)^2}=120,166 $

$\qquad$ $ \large \frac {\overline{AE}} {\overline{BF}} = \frac{126,491}{120,166} $ $ \large = \frac{20}{19} $ $ \iff 20\cdot \overline{BF}=19\cdot \overline{AE} $

$\qquad\qquad\qquad\qquad\qquad\qquad$ $ \iff \overline{BF}= \large \frac{19}{20} \cdot $ $ \overline{AE} $

$\qquad\qquad\qquad\qquad\qquad\qquad$ $ \iff \overline{BF} \parallel \overline{AE} \:\: \longrightarrow \:\: ABFE $ ist ein Trapez.

$ \:\:\: $ $ \: \Large \Bigg\downarrow $ $ \normalsize Prüfe\: ob\: das\: Viereck\: im\: E\: einen\: rechten\: Winkel\: hat $

$\qquad$ Berechene das Skalarprodukt von $\overrightarrow{AE}$ und $\overrightarrow{EF}$

$\qquad\qquad$ $ \overrightarrow{AE} = \begin{pmatrix} 0-0\\40-0\\120-0 \end{pmatrix} = \begin{pmatrix} 0\\40\\120 \end{pmatrix} \:\:\:\: | \:\:\:\: \overrightarrow{EF} = \begin{pmatrix} 0-0\\58-40\\114-120 \end{pmatrix} = \begin{pmatrix} 0\\18\\-6 \end{pmatrix} $

$\qquad\qquad$ $ \overrightarrow{AE} \cdot \overrightarrow{EF} = \begin{pmatrix} 0\\40\\120 \end{pmatrix} \cdot \begin{pmatrix} 0\\18\\-6 \end{pmatrix} = 0\cdot 0+40\cdot 18+120\cdot (-6)=0 $

$\qquad\qquad$ $ \longrightarrow $ das Viereck hat im Punkt $E$ einen rechten Winkel.

b) Liegen $L$ und $M$ auf $AE$ bzw. $BF$ und verläuft $LM$ parallel zu $AB$ durch den Mittel-punkt von $EF$ , so ist der Flächeninhalt des Vierecks $ABFE$ ebenso groß wie der Flächeninhalt des Parallelogramms $ABML$. Betrachtet man $AB$ als dessen Grund- seite, so ist die zugehörige Höhe der Mittelwert der $z$-Koordinaten von $E$ und $F$. Die untere Teilfläche ist ein Parallelogramm, dessen Höhe zur Grundseite $AB$ halb so groß ist wie die des Parallelogramms $ABML$.