Lagebeziehungen von zwei Ebenen
Ebenen können auf unterschiedliche Weise im Raum zueinander liegen. Die verschiedenen Optionen sind wie folgt:
Mögliche Lagebeziehungen zwischen zwei Ebenen
Ebenen identisch | Jeder Punkt, der auf einer Ebene liegt, liegt auch auf der anderen und es gibt unendlich viele Schnittgeraden. |
---|---|
Ebenen schnittpunkt | Ebenen haben genau eine gemeinsame Schnittgerade, die alle Punkte enthält, die auf beiden Ebenen liegen. |
Ebenen echt parallel | Zwei Geraden sind echt parallel, wenn sie durch eine Verschiebung identisch werden. |
Beispielaufgaben: Schnittgerade
Es gibt zwei Ebenen $G$ (in Koordinatenform) und $H$ (in Parameterform):
$ \qquad G:7x+y-3z-8=0 \:\:$ und $\:\: H:\vec{x}=\begin{pmatrix}0\\1\\0 \end{pmatrix} + r\cdot \begin{pmatrix}0\\-1\\2 \end{pmatrix} + s\cdot \begin{pmatrix}1\\0\\0 \end{pmatrix} $
Setze $H$ in $G$ ein:
$ \qquad G:7(0+r\cdot0+s\cdot1)+(1+r\cdot(-1)+s\cdot0)-3(0+r\cdot2+s\cdot0)-8=0 $
$ \qquad\qquad \Rightarrow 7s+1-r-6r-8=0 $
$ \qquad\qquad \Rightarrow 7s-7r-7-8=0\:\:|\: +7r $
$ \qquad\qquad \Rightarrow 7s-7=7r\:\:|\: :7 $
$ \qquad\qquad \iff \underline{s-1=r} $
Setze $r$ in $H$ ein um die Gleichung der Schnittgeraden $g$ zu erhalten:
$ \qquad\qquad g:\vec{x}=\begin{pmatrix}0\\1\\0 \end{pmatrix} + (s-1)\cdot \begin{pmatrix}0\\-1\\2 \end{pmatrix} + s\cdot \begin{pmatrix}1\\0\\0 \end{pmatrix} $
Fasse zusammen:
$ \qquad\qquad g:\vec{x}=\begin{pmatrix}0\\1\\0 \end{pmatrix} + s\cdot \begin{pmatrix}0\\-1\\2 \end{pmatrix} + (-1)\cdot \begin{pmatrix}0\\-1\\2 \end{pmatrix} + s\cdot \begin{pmatrix}1\\0\\0 \end{pmatrix} $
$ \qquad\qquad g:\vec{x}=\begin{pmatrix}0\\1\\0 \end{pmatrix} + (-1)\cdot \begin{pmatrix}0\\-1\\2 \end{pmatrix} + s\cdot \begin{pmatrix}0\\-1\\2 \end{pmatrix} + s\cdot \begin{pmatrix}1\\0\\0 \end{pmatrix} $
$ \qquad\qquad \iff g:\vec{x}=\begin{pmatrix}0\\2\\-2 \end{pmatrix} + \cdot \begin{pmatrix}1\\-1\\2 \end{pmatrix} $
$ \qquad\qquad \iff g:\vec{x}=\begin{pmatrix}0\\2\\-2 \end{pmatrix} + \cdot \begin{pmatrix}1\\-1\\2 \end{pmatrix} $
Die Schnittgerade lautet:
$ \qquad\qquad g:\vec{x}=\begin{pmatrix}0\\2\\-2 \end{pmatrix} + \cdot \begin{pmatrix}1\\-1\\2 \end{pmatrix} $
Übungsaufgaben
Bestimme die Schnittgerade der in Parameter- und Koordinatenform gegebenen Ebenen.
-
$\:\:\:
\large
\textcolor{black}{
E_1:-x+2y+z=-4
}$
$\qquad$
$\qquad$
$
\large
\textcolor{black}{
E_2: \vec{x}= \begin{pmatrix}2\\0\\-1 \end{pmatrix}
+
r\cdot \begin{pmatrix}0\\1\\-2 \end{pmatrix}
+
s\cdot \begin{pmatrix}2\\-1\\3 \end{pmatrix}}
$
Lösung
Lineare Unabhängigkeit
$\qquad \textcolor{black}{ E_1:-x+2y+z=-4; }$ $\qquad$ $ \textcolor{black}{ E_2: \vec{x}= \begin{pmatrix}2\\0\\-1 \end{pmatrix} + r\cdot \begin{pmatrix}0\\1\\-2 \end{pmatrix} + s\cdot \begin{pmatrix}2\\-1\\3 \end{pmatrix}} $
$ \qquad E_1:-(2+0\cdot r+2\cdot s) + 2(0+1\cdot r-1\cdot s) + (-1-2\cdot r+3\cdot s) =-4 $
$ \qquad\qquad \Rightarrow -2-2s+2r-2s-1-2r+3s=-4 \:\:|\:\:+3 $
$ \qquad\qquad \Rightarrow -s=-1 \:\:|\:\::(-1) $
$ \qquad\qquad \Longrightarrow \underline{s=1} $
Setze in $E_2$ ein um die Gleichung der Schnittgeraden zu erhalten:
$ \qquad g:\vec{x} = \begin{pmatrix}2\\0\\-1\end{pmatrix} + r\cdot \begin{pmatrix}0\\1\\-2\end{pmatrix} + 1\cdot \begin{pmatrix}2\\-1\\3\end{pmatrix} $
Fasse zusammen:
$ \qquad g:\vec{x} = \begin{pmatrix}2\\0\\-1\end{pmatrix} + 1\cdot \begin{pmatrix}2\\-1\\3\end{pmatrix} + r\cdot \begin{pmatrix}0\\1\\-2\end{pmatrix} $
$ \qquad \iff g:\vec{x} = \begin{pmatrix}4\\-1\\2\end{pmatrix} + r\cdot \begin{pmatrix}0\\1\\-2\end{pmatrix} $
Die Schnittgerade lautet:
$ \qquad\qquad\qquad\qquad g:\vec{x} = \begin{pmatrix}4\\-1\\2\end{pmatrix} + r\cdot \begin{pmatrix}0\\1\\-2\end{pmatrix} $
$ \textcolor{blue}{E_1} \cap \textcolor{purple}{E_2}=g $
$\qquad \textcolor{black}{ E_1:-x+2y+z=-4; }$ $\qquad$ $ \textcolor{black}{ E_2: \vec{x}= \begin{pmatrix}2\\0\\-1 \end{pmatrix} + r\cdot \begin{pmatrix}0\\1\\-2 \end{pmatrix} + s\cdot \begin{pmatrix}2\\-1\\3 \end{pmatrix}} $
$ \qquad E_1:-(2+0\cdot r+2\cdot s) + 2(0+1\cdot r-1\cdot s) + (-1-2\cdot r+3\cdot s) =-4 $
$ \qquad\qquad \Rightarrow -2-2s+2r-2s-1-2r+3s=-4 \:\:|\:\:+3 $
$ \qquad\qquad \Rightarrow -s=-1 \:\:|\:\::(-1) $
$ \qquad\qquad \Longrightarrow \underline{s=1} $
Setze in $E_2$ ein um die Gleichung der Schnittgeraden zu erhalten:
$ \qquad g:\vec{x} = \begin{pmatrix}2\\0\\-1\end{pmatrix} + r\cdot \begin{pmatrix}0\\1\\-2\end{pmatrix} + 1\cdot \begin{pmatrix}2\\-1\\3\end{pmatrix} $
Fasse zusammen:
$ \qquad g:\vec{x} = \begin{pmatrix}2\\0\\-1\end{pmatrix} + 1\cdot \begin{pmatrix}2\\-1\\3\end{pmatrix} + r\cdot \begin{pmatrix}0\\1\\-2\end{pmatrix} $
$ \qquad \iff g:\vec{x} = \begin{pmatrix}4\\-1\\2\end{pmatrix} + r\cdot \begin{pmatrix}0\\1\\-2\end{pmatrix} $
Die Schnittgerade lautet:
$ \qquad\qquad\qquad\qquad g:\vec{x} = \begin{pmatrix}4\\-1\\2\end{pmatrix} + r\cdot \begin{pmatrix}0\\1\\-2\end{pmatrix} $
Graphische Darstellung
$ \textcolor{blue}{E_1} \cap \textcolor{purple}{E_2}=g $
$\:\:\: \large \textcolor{black}{ E_1:x+2y-2z=5 }$ $\qquad$ $\qquad$ $ \large \textcolor{black}{ E_2: \vec{x}= \begin{pmatrix}7\\1\\2 \end{pmatrix} + r\cdot \begin{pmatrix}4\\1\\3 \end{pmatrix} + s\cdot \begin{pmatrix}2\\-1\\0 \end{pmatrix}} $
Lösung
Lagebestimmung
$\qquad \textcolor{black}{ E_1:x+2y-2z=5; }$ $\qquad$ $ \textcolor{black}{ E_2: \vec{x}= \begin{pmatrix}7\\1\\2 \end{pmatrix} + r\cdot \begin{pmatrix}4\\1\\3 \end{pmatrix} + s\cdot \begin{pmatrix}2\\-1\\0 \end{pmatrix}} $
$ \qquad E_1:(7+4\cdot r+2\cdot s) + 2\cdot (1+1\cdot r-1\cdot s) – 2\cdot (2+3\cdot r+0\cdot s) =5 $
$ \qquad\qquad \Rightarrow 7+4r+2s+2+2r-2s-4-6r=5 \:\: \iff 5=5\:\: W.A. $
Die Ebenen sind identisch, also liegen aufeinander.
$ \textcolor{blue}{E_1} \equiv \textcolor{purple}{E_2} $
$\qquad \textcolor{black}{ E_1:x+2y-2z=5; }$ $\qquad$ $ \textcolor{black}{ E_2: \vec{x}= \begin{pmatrix}7\\1\\2 \end{pmatrix} + r\cdot \begin{pmatrix}4\\1\\3 \end{pmatrix} + s\cdot \begin{pmatrix}2\\-1\\0 \end{pmatrix}} $
$ \qquad E_1:(7+4\cdot r+2\cdot s) + 2\cdot (1+1\cdot r-1\cdot s) – 2\cdot (2+3\cdot r+0\cdot s) =5 $
$ \qquad\qquad \Rightarrow 7+4r+2s+2+2r-2s-4-6r=5 \:\: \iff 5=5\:\: W.A. $
Die Ebenen sind identisch, also liegen aufeinander.
Graphische Darstellung
$ \textcolor{blue}{E_1} \equiv \textcolor{purple}{E_2} $
$\:\:\: \large \textcolor{black}{ E_1:\vec{x} = \begin{pmatrix}1\\1\\2 \end{pmatrix} + r\cdot \begin{pmatrix}0\\1\\1 \end{pmatrix} + s\cdot \begin{pmatrix}1\\1\\3 \end{pmatrix} } $ $\qquad$ $\qquad$ $ \large \textcolor{black}{ E_2:2x+y-z-1=0 } $
Lösung
Lagebestimmung
$ \qquad \textcolor{black}{ E_1: \vec{x}= \begin{pmatrix}1\\1\\2 \end{pmatrix} + r\cdot \begin{pmatrix}0\\1\\1 \end{pmatrix} + s\cdot \begin{pmatrix}1\\1\\3 \end{pmatrix}}; $ $\qquad$ $ \textcolor{black}{ E_2:2x+y-z-1=0 }$
$ \qquad\qquad \Rightarrow E_1: 2(1+0\cdot r+1\cdot s)+1+1\cdot r+1\cdot s-2-1\cdot r-3\cdot s-1=0 $
$ \qquad\qquad \iff E_1: 0=0 \:\:\: $
Die beiden Ebenen sind identisch, also liegen aufeinander.
$ \textcolor{dodgerblue}{E_1} \equiv \textcolor{purple}{E_2} $
$ \qquad \textcolor{black}{ E_1: \vec{x}= \begin{pmatrix}1\\1\\2 \end{pmatrix} + r\cdot \begin{pmatrix}0\\1\\1 \end{pmatrix} + s\cdot \begin{pmatrix}1\\1\\3 \end{pmatrix}}; $ $\qquad$ $ \textcolor{black}{ E_2:2x+y-z-1=0 }$
$ \qquad\qquad \Rightarrow E_1: 2(1+0\cdot r+1\cdot s)+1+1\cdot r+1\cdot s-2-1\cdot r-3\cdot s-1=0 $
$ \qquad\qquad \iff E_1: 0=0 \:\:\: $
Die beiden Ebenen sind identisch, also liegen aufeinander.
Graphische Darstellung
$ \textcolor{dodgerblue}{E_1} \equiv \textcolor{purple}{E_2} $
$\:\:\: \large \textcolor{black}{ E_1:\vec{x} = \begin{pmatrix}1\\-1\\3 \end{pmatrix} + r\cdot \begin{pmatrix}1\\-1\\-1 \end{pmatrix} + s\cdot \begin{pmatrix}-1\\2\\-1 \end{pmatrix} } $ $\qquad$ $\qquad$ $ \large \textcolor{black}{ E_2:x-2y+z-2=0 } $
Lösung
Lagebestimmung
$ \qquad \textcolor{black}{ E_1: \vec{x}= \begin{pmatrix}1\\-1\\3 \end{pmatrix} + r\cdot \begin{pmatrix}1\\-1\\-1 \end{pmatrix} + s\cdot \begin{pmatrix}-1\\2\\-1 \end{pmatrix}}; $ $\qquad$ $ \textcolor{black}{ E_2:x-2y+z-2=0 }$
$ \qquad \Rightarrow E_1: (1+1\cdot r+(-1)\cdot s) – 2[(-1)+(-1)\cdot r+2\cdot s] + 3+ (-1)\cdot r+ (-1)\cdot s – 2=0 $
Löse die Klammern auf und fasse zusammen:
$ \qquad \Rightarrow E_1: 1+r-s + 2+2r-4s + 3-r-s – 2=0 $
$ \qquad \Rightarrow r=-2+3s $
Setze $r$ in $E_1$ ein und fasse zusammen, um die ie Schnittgerade zu erhalten:
$\qquad$ $ \textcolor{black}{ E_1: \vec{x}= \begin{pmatrix}1\\-1\\3 \end{pmatrix} + (-2+3s)\cdot \begin{pmatrix}1\\-1\\-1 \end{pmatrix} + s\cdot \begin{pmatrix}-1\\2\\-1 \end{pmatrix}} $
$\qquad$ $ \textcolor{black}{ g: \vec{x}= \begin{pmatrix}1\\-1\\3 \end{pmatrix} – 2\cdot \begin{pmatrix}1\\-1\\-1 \end{pmatrix} + 3s\cdot \begin{pmatrix}1\\-1\\-1 \end{pmatrix} + s\cdot \begin{pmatrix}-1\\2\\-1 \end{pmatrix}} $
$ \qquad \textcolor{black}{ g: \vec{x}= \begin{pmatrix}-1\\1\\5 \end{pmatrix} + s\cdot \begin{pmatrix}2\\-1\\-4 \end{pmatrix}} $
$ \qquad \textcolor{black}{ \iff g: \vec{x}= \begin{pmatrix}-1\\1\\5 \end{pmatrix} + s\cdot \begin{pmatrix}2\\-1\\-4 \end{pmatrix}} $
Die Schnittgerade lautet:
$ \qquad\qquad\qquad\qquad\qquad \textcolor{black}{ \iff g: \vec{x}= \begin{pmatrix}-1\\1\\5 \end{pmatrix} + s\cdot \begin{pmatrix}2\\-1\\-4 \end{pmatrix}} $
$\textcolor{dodgerblue}{E_1} \cap \textcolor{magenta}{E_2}=$
$ \qquad \textcolor{black}{ E_1: \vec{x}= \begin{pmatrix}1\\-1\\3 \end{pmatrix} + r\cdot \begin{pmatrix}1\\-1\\-1 \end{pmatrix} + s\cdot \begin{pmatrix}-1\\2\\-1 \end{pmatrix}}; $ $\qquad$ $ \textcolor{black}{ E_2:x-2y+z-2=0 }$
$ \qquad \Rightarrow E_1: (1+1\cdot r+(-1)\cdot s) – 2[(-1)+(-1)\cdot r+2\cdot s] + 3+ (-1)\cdot r+ (-1)\cdot s – 2=0 $
Löse die Klammern auf und fasse zusammen:
$ \qquad \Rightarrow E_1: 1+r-s + 2+2r-4s + 3-r-s – 2=0 $
$ \qquad \Rightarrow r=-2+3s $
Setze $r$ in $E_1$ ein und fasse zusammen, um die ie Schnittgerade zu erhalten:
$\qquad$ $ \textcolor{black}{ E_1: \vec{x}= \begin{pmatrix}1\\-1\\3 \end{pmatrix} + (-2+3s)\cdot \begin{pmatrix}1\\-1\\-1 \end{pmatrix} + s\cdot \begin{pmatrix}-1\\2\\-1 \end{pmatrix}} $
$\qquad$ $ \textcolor{black}{ g: \vec{x}= \begin{pmatrix}1\\-1\\3 \end{pmatrix} – 2\cdot \begin{pmatrix}1\\-1\\-1 \end{pmatrix} + 3s\cdot \begin{pmatrix}1\\-1\\-1 \end{pmatrix} + s\cdot \begin{pmatrix}-1\\2\\-1 \end{pmatrix}} $
$ \qquad \textcolor{black}{ g: \vec{x}= \begin{pmatrix}-1\\1\\5 \end{pmatrix} + s\cdot \begin{pmatrix}2\\-1\\-4 \end{pmatrix}} $
$ \qquad \textcolor{black}{ \iff g: \vec{x}= \begin{pmatrix}-1\\1\\5 \end{pmatrix} + s\cdot \begin{pmatrix}2\\-1\\-4 \end{pmatrix}} $
Die Schnittgerade lautet:
$ \qquad\qquad\qquad\qquad\qquad \textcolor{black}{ \iff g: \vec{x}= \begin{pmatrix}-1\\1\\5 \end{pmatrix} + s\cdot \begin{pmatrix}2\\-1\\-4 \end{pmatrix}} $
Graphische Darstellung
$\textcolor{dodgerblue}{E_1} \cap \textcolor{magenta}{E_2}=$